【題目】在四邊形中,,對角線交于點(diǎn)平分,延長至點(diǎn),使,連接

1)求證:四邊形是菱形;

2)若,求的長.

【答案】1)見解析;(2OE=

【解析】

1)由一組對邊平行且相等證明四邊形ABCD是平行四邊形,根據(jù)平行線的性質(zhì)以及角平分線的定義得出∠ABD=ADB,從而得到AB=AD,根據(jù)一組鄰邊相等的平行四邊形是菱形即可證明;

2)先證明△ABD是等邊三角形,得到∠ADB=60°,根據(jù)菱形的性質(zhì)以及DE=BO,證明DE=DO,從而得到∠E=EOD=30°,OE=OA,再利用含30°直角三角形的性質(zhì)以及勾股定理即可解答.

1)證明:∵,

∴四邊形ABCD是平行四邊形,∠ADB=CBD,

BD平分∠ABC,

∴∠ABD=∠CBD

∴∠ABD=∠ADB,

AB=AD

∴平行四邊形ABCD是菱形.

2)∵AB=AD,∠DAB=60°,

∴△ABD是等邊三角形,

∴∠ADB=60°,

∴∠E+EOD=60°,

∵四邊形ABCD是菱形,

∴∠DAC=30°,OD=OBACBD,

DE=BO

DE=DO,

∴∠E=EOD=30°,

∴∠E=∠DAC,

OE=OA,

Rt△AOD中,AD=4,∠DAO=30°,

DO=2,AO=,

OE=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某年級共有300名學(xué)生.為了解該年級學(xué)生A,B兩門課程的學(xué)習(xí)情況,從中隨機(jī)抽取60名學(xué)生進(jìn)行測試,獲得了他們的成績(百分制),并對數(shù)據(jù)(成績)進(jìn)行整理、描述和分析.下面給出了部分信息.

.A課程成績的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:,,,,);

.A課程成績在這一組是:

70 71 71 71 76 76 77 78 79 79 79

.A,B兩門課程成績的平均數(shù)、中位數(shù)、眾數(shù)如下:

課程

平均數(shù)

中位數(shù)

眾數(shù)

A

B

70

83

根據(jù)以上信息,回答下列問題:

(1)寫出表中的值;

(2)在此次測試中,某學(xué)生的A課程成績?yōu)?/span>76分,B課程成績?yōu)?/span>71分,這名學(xué)生成績排名更靠前的課程是________(填“A”“B”),理由是_______;

(3)假設(shè)該年級學(xué)生都參加此次測試,估計(jì)A課程成績超過分的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB、AD是⊙O的弦,點(diǎn)C是DO的延長線與弦AB的交點(diǎn),∠ABO=30°,OB=2.

(1)求弦AB的長;
(2)若∠D=20°,求∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示在平面直角坐標(biāo)系中,有長方形OABC,O是坐標(biāo)原點(diǎn),A(a,0,C0,b),且a,b滿足

1)求A,B,C三點(diǎn)坐標(biāo);

2)如圖2所示,長方形對角線OB、AC交于D點(diǎn),若有一點(diǎn)PA點(diǎn)出發(fā),以1單位/秒速度向x軸負(fù)方向勻速運(yùn)動(dòng),同時(shí)另一點(diǎn)QO出發(fā),以2個(gè)單位/秒,沿長方形邊長O-C-B順時(shí)針勻速運(yùn)動(dòng),當(dāng)Q到達(dá)B點(diǎn)時(shí)P、Q同時(shí)停止運(yùn)動(dòng),設(shè)P點(diǎn)開始運(yùn)動(dòng)時(shí)間為t,請問:當(dāng)t為何值時(shí)有SOCP≤SODQ ?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019331日,2019長安汽車重慶國際馬拉松賽在南濱路鳴槍開跑,小育和小才參加了此次比賽,小育在跑出小時(shí)后不慎摔倒,志愿者將小育扶到路旁處理傷口,休息了分鐘后決定再次出發(fā),在小育出發(fā)小時(shí)后小才追上小育,如圖所示是兩人離開出發(fā)地的距離(公里)和出發(fā)時(shí)間(小時(shí))之間的函數(shù)圖象.當(dāng)小才到達(dá)終點(diǎn)時(shí),小育距離終點(diǎn)____公里.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2﹣2(k﹣1)x+k2=0有兩個(gè)實(shí)數(shù)根x1 , x2
(1)求k的取值范圍;
(2)若|x1+x2|=x1x2﹣1,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B以1cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng).

(1)如果P,Q分別從A,B同時(shí)出發(fā),那么幾秒后,△PBQ的面積等于4cm2?
(2)如果P,Q分別從A,B同時(shí)出發(fā),那么幾秒后,△PBQ中PQ的長度等于5cm?
(3)在(1)中,當(dāng)P,Q出發(fā)幾秒時(shí),△PBQ有最大面積?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(﹣2,2),B(﹣3,﹣2)(每個(gè)小正方形的邊長均為1).

1)若點(diǎn)D與點(diǎn)A關(guān)于y軸對稱則點(diǎn)D的坐標(biāo)為   

2)將點(diǎn)B向右平移5個(gè)單位,再向上平移2個(gè)單位得到點(diǎn)C,則點(diǎn)C的坐標(biāo)為   

3)請?jiān)趫D中表示出DC兩點(diǎn),順次連接ABCD,并求出AB、C、D組成的四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,將一點(diǎn)(橫坐標(biāo)與縱坐標(biāo)不相等)的橫坐標(biāo)與縱坐標(biāo)互換后得到的點(diǎn)叫這一點(diǎn)的“互換點(diǎn)”,如(﹣3,5)與(5,﹣3)是一對“互換點(diǎn)”.
(1)任意一對“互換點(diǎn)”能否都在一個(gè)反比例函數(shù)的圖象上?為什么?
(2)M、N是一對“互換點(diǎn)”,若點(diǎn)M的坐標(biāo)為(m,n),求直線MN的表達(dá)式(用含m、n的代數(shù)式表示);
(3)在拋物線y=x2+bx+c的圖象上有一對“互換點(diǎn)”A、B,其中點(diǎn)A在反比例函數(shù)y=﹣ 的圖象上,直線AB經(jīng)過點(diǎn)P( ),求此拋物線的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊答案