精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知一條東西走向的河流,在河流對岸有一點A,小明在岸邊點B處測得點A在點B的北偏東30°方向上,小明沿河岸向東走80m后到達點C,測得點A在點C的北偏西60°方向上,則點A到河岸BC的距離為

【答案】20
【解析】方法1、過點A作AD⊥BC于點D.

根據題意,∠ABC=90°﹣30°=60°,∠ACD=30°,

設AD=x米,

在Rt△ACD中,tan∠ACD= ,

∴CD= = = x,

在Rt△ABD中,tan∠ABC=

∴BD= = = x,

∴BC=CD+BD= x+ x=80

∴x=20

答:該河段的寬度為20 米.

故答案是:20 米.

方法2、過點A作AD⊥BC于點D.

根據題意,∠ABC=90°﹣30°=60°,∠ACD=30°,

∴∠BAC=180°﹣∠ABC﹣∠ACB=90°,

在Rt△ABC中,BC=80m,∠ACB=30°,

∴AB=40m,AC=40 m,

∴SABC= AB×AC= ×40×40 =800

∵SABC= BC×AD= ×80×AD=40AD=800 ,

∴AD=20

答:該河段的寬度為20 米.

故答案是:20 米.

【考點精析】根據題目的已知條件,利用三角形的面積和銳角三角函數的定義的相關知識可以得到問題的答案,需要掌握三角形的面積=1/2×底×高;銳角A的正弦、余弦、正切、余切都叫做∠A的銳角三角函數.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】甲、乙兩地相距300km,一輛貨車和一輛轎車先后從甲地出發(fā)向乙地.如圖,線段OA表示貨車離甲地距離y(km)與時間x(h)之間的函數關系,折線BCDE表示轎車離甲地距離y(km)與時間x(h)之間的函數關系.請根據圖象,解答下列問題:

(1)線段CD表示轎車在途中停留了 h;

(2)求線段DE對應的函數解析式;

(3)求轎車從甲地出發(fā)后經過多長時間追上貨車.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,甲、乙兩動點分別從正方形ABCD的頂點,A,C同時沿正方形的邊開始移動,甲點依順時針方向環(huán)行,乙點依逆時針方向環(huán)行,若乙的速度是甲的速度的4倍,則它們第2019次相遇在______邊上(填AB,BC,CDAD).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了推動“龍江經濟帶”建設,我省某蔬菜企業(yè)決定通過加大種植面積、增加種植種類,促進經濟發(fā)展.2017年春,預計種植西紅柿、馬鈴薯、青椒共100公頃(三種蔬菜的種植面積均為整數),青椒的種植面積是西紅柿種植面積的2倍,經預算,種植西紅柿的利潤可達1萬元/公頃,青椒1.5萬元/公頃,馬鈴薯2萬元/公頃,設種植西紅柿x公頃,總利潤為y萬元.
(1)求總利潤y(萬元)與種植西紅柿的面積x(公頃)之間的關系式.
(2)若預計總利潤不低于180萬元,西紅柿的種植面積不低于8公頃,有多少種種植方案?
(3)在(2)的前提下,該企業(yè)決定投資不超過獲得最大利潤的 在冬季同時建造A、B兩種類型的溫室大棚,開辟新的經濟增長點,經測算,投資A種類型的大棚5萬元/個,B種類型的大棚8萬元/個,請直接寫出有哪幾種建造方案?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點M,N在半圓的直徑AB上,點P,Q在 上,四邊形MNPQ為正方形.若半圓的半徑為 ,則正方形的邊長為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AE、BF、DC是直線,B在直線AC上,E在直線DF上,∠1=∠2,∠A=∠F.

求證:∠C=∠D.

證明:因為∠1=∠2(已知),∠1=∠3( )

得∠2=∠3( )

所以AE//_______( )

得∠4=∠F( )

因為__________(已知)

得∠4=∠A

所以______//_______( )

所以∠C=∠D( )

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】ABC中,AB=AC,點D是直線BC上一點(不與B、C重合),以AD為一邊在AD的右側作ADE,使AD=AE,DAE=BAC,連接CE

1)如圖一,若ABC是等邊三角形,且AB=AC=2,D在線段BC上,

①求證:∠BCE+BAC=180°;

②當四邊形ADCE的周長取最小值時,求BD的長.

2)若∠BAC60° ,當點D射線BC上移動,則∠BCE和∠BAC 之間有怎樣的數量關系?并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,如圖,已知Rt△DOE,∠DOE=90°,OD=3,點Dy軸上,點Ex軸上,在△ABC中,點A,Cx軸上,AC=5∠ACB+∠ODE=180°∠ABC=∠OED,BC=DE.按下列要求畫圖(保留作圖痕跡):

1)將△ODEO點按逆時針方向旋轉90°得到△OMN(其中點D的對應點為點M,點E的對應點為點N),畫出△OMN

2)將△ABC沿x軸向右平移得到△A′B′C′(其中點A,BC的對應點分別為點A′,B′,C′),使得B′C′與(1)中的△OMN的邊NM重合;

3)求OE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】給出下面兩個定理:

線段垂直平分線上的點到這條線段兩個端點的距離相等;

到一條線段兩個端點距離相等的點在這條線段的垂直平分線上.

應用上述定理進行如下推理:

如圖,直線l是線段MN的垂直平分線.

A在直線l,AM=AN.(  )

BM=BN,B在直線l.(  )

CMCN,C不在直線l.

這是如果點C在直線l,那么CM=CN, (  )

這與條件CMCN矛盾.

以上推理中各括號內應注明的理由依次是 (  )

A. ②①① B. ②①②

C. ①②② D. ①②①

查看答案和解析>>

同步練習冊答案