解:(1)①證明:∵△ABC和△APQ是正三角形,
∴AB=AC,AP=AQ,∠BAC=∠PAQ.
∴∠BAC-∠PAC=∠PAQ-∠PAC.
∴∠BAP=∠CAQ.所以△ABP≌△ACQ.(3分)
②3(5分)
(2)解法一:過點E作底邊FG的垂線,點H為垂足.
在△EFG中,易得EH=12.(6分)類似(1)可證明△EFM≌△EGN,(7分)
∴∠EFM=∠EGN.
∵∠EFG=∠EGF,
∴∠EGF=∠EGN,
∴GE是∠FGN的角平分線,(9分)
∴點E到直線FG和GN的距離相等,
∴點E到直線GN的距離是12.(10分)
解法二:過點E作底邊FG的垂線,點H為垂足.
過點E作直線 GN的垂線,點K為垂足.
在△EFG中,易得EH=12.(6分)類似(1)可證明△EFM≌△EGN,(7分)
∴∠EFM=∠EGN.可證明△EFH≌△EGK,(9分)
∴EH=EK.所以點E到直線GN的距離是12.(10分)
解法三:把△EFG繞點E旋轉,對應著點M在邊FG上從點F開始運動.
由題意,在運動過程中,點E到直線GN的距離不變.
不失一般性,設∠EMF=90°.類似(1)可證明△EFM≌△EGN,
∴∠ENG=∠EMF=90°.
求得EM=12.
∴點E到直線GN的距離是12. (酌情賦分)
分析:(1)①根據(jù)正三角形的性質知∠BAC=∠PAQ=60°,所以∠BAC-∠PAC=∠PAQ-∠PAC;然后再由等邊三角形的邊都相等知AB=AC,AP=AQ;從而根據(jù)全等三角形的判定定理SAS來證明△ABP≌△ACQ;
(2)作輔助線“過點E作底邊FG的垂線,點H為垂足”構建直角三角形,然后根據(jù)旋轉的性質先證明△EFM≌△EGN(SAS);最后求得∠ENG=∠EMF=90°、EM=12,即點E到直線GN的距離是12.
點評:本題考查了全等三角形是判定與性質及等邊三角形的性質.解答此題的關鍵是根據(jù)等邊三角形的三邊關系及三個內角的關系證明△ABP≌△ACQ和△EFM≌△EGN.