【題目】如圖,在平面直角坐標系xOy中,菱形ABCD的對角線ACBD交于點P-1,2),ABx軸于點E,正比例函數(shù)y=mx的圖像與反比例函數(shù)的圖像相交于AP兩點。

1)求mn的值與點A的坐標;

2)求證:

3)求的值

【答案】1,,點的坐標是;(2)見解析;(3.

【解析】

1)根據(jù)點P的坐標,利用待定系數(shù)法可求出m,n的值,利用正、反比例函數(shù)圖象的對稱性結合點P的坐標找出點A的坐標即可解答;

2)由菱形的性質(zhì)可得出ACBD,ABCD,利用平行線的性質(zhì)可得出∠DCP=OAE,結合ABx軸可得出∠AEO=CPD=90°,進而即可證出△CPD∽△AEO

3)由點A的坐標可得出AE,OE,AO的長,由相似三角形的性質(zhì)可得出∠CDP=AOE,再利用正弦的定義即可求出sinCDB的值.

解:(1)∵正比例函數(shù),反比例函數(shù)均經(jīng)過點,

,,

解得:,.

∴正比例函數(shù),反比例函數(shù).

又正比例函數(shù)與反比例函數(shù)均是中心對稱圖形,則其兩個交點也成中心對稱點,

,

點的坐標是.

2)證明:∵四邊形ABCD是菱形,

ACBDABCD,

∴∠DCP=BAP,即∠DCP=OAE

ABx軸,

∴∠AEO=CPD=90°,

∴△CPD∽△AEO

3)∵點的坐標是.

,

,

∴△CPD∽△AEO,

.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】勾股定理是人類最偉大的科學發(fā)現(xiàn)之一,在我國古算書《周髀算經(jīng)》中早有記載.如圖1,以直角三角形的各邊為邊分別向外作正方形,再把較小的兩張正方形紙片按圖2的方式放置在最大正方形內(nèi).若知道圖中陰影部分的面積,則一定能求出(

A.直角三角形的面積

B.最大正方形的面積

C.較小兩個正方形重疊部分的面積

D.最大正方形與直角三角形的面積和

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點是雙曲線)上的一點,過點軸的垂線交直線于點,連結,.當點在曲線上運動,且點的上方時,面積的最大值是______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】安全使用電瓶車可以大幅度減少因交通事故引發(fā)的人身傷害,為此交警部門在全市范圍開展了安全使用電瓶車專項宣傳活動.在活動前和活動后分別隨機抽取了部分使用電瓶車的市民,就騎電瓶車戴安全帽情況進行問卷調(diào)查,將收集的數(shù)據(jù)制成如下統(tǒng)計圖表.

活動前騎電瓶車戴安全帽情況統(tǒng)計表

類別

人數(shù)

68

245

510

177

合計

1000

1)宣傳活動前,在抽取的市民中哪一類別的人數(shù)最多?占抽取人數(shù)的百分之幾?

2)該市約有30萬人使用電瓶車,請估計活動前全市騎電瓶車都不戴安全帽的總?cè)藬?shù);

3)小明認為,宣傳活動后騎電瓶車都不戴安全帽的人數(shù)為178,比活動前增加了1人,因此交警部門開展的宣傳活動沒有效果.小明分析數(shù)據(jù)的方法是否合理?請結合統(tǒng)計圖表,對小明分析數(shù)據(jù)的方法及交警部門宣傳活動的效果談談你的看法.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AB=2,AD=4,對角線AC,BD相交于點O,且E,FG,H分別是AOBO,CODO的中點,則下列說法正確的是(

A.EH=HGB.四邊形EFGH是平行四邊形

C.ACBDD.的面積是的面積的2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某校為了讓學生的課余生活豐富多彩,開展了以下課外活動:

代號

活動類型

A

經(jīng)典誦讀與寫作

B

數(shù)學興趣與培優(yōu)

C

英語閱讀與寫作

D

藝體類

E

其他

為了解學生的選擇情況,現(xiàn)從該校隨機抽取了部分學生進行問卷調(diào)查(參與問卷調(diào)查的每名學生只能選擇其中一項),并根據(jù)調(diào)查得到的數(shù)據(jù)繪制了如圖所示的兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖提供的信息回答下列問題(要求寫出簡要的解答過程).

1)此次共調(diào)查了 名學生.

2)將條形統(tǒng)計圖補充完整.

3數(shù)學興趣與培優(yōu)所在扇形的圓心角的度數(shù)為

4)若該校共有2000名學生,請估計該校喜歡A、B、C三類活動的學生共有多少人?

5)學校將從喜歡A類活動的學生中選取4位同學(其中女生2名,男生2名)參加校園金話筒朗誦初賽,并最終確定兩名同學參加決賽,請用列表或畫樹狀圖的方法,求出剛好一男一女參加決賽的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,tanA=,AC=6,以BC為斜邊向右側(cè)作等腰直角EBC,PBE延長線上一點,連接PC,以PC為直角邊向下方作等腰直角PCD,CD交線段BE于點F,連接BD

1)求證:PCCD=CEBC

2)若PE=n0n≤4),求BDP的面積;(用含n的代數(shù)式表示)

3)當BDF為等腰三角形時,請直接寫出線段PE的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O上的兩點AB分別作切線,并交BO、AO的延長線于點C、D,連接CDO于點E、F,過圓心OOMCD,垂足為M

(1)判斷COD的形狀并說明理由;

(2)CE=3,DF的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線的對稱軸是直線,與軸相交于,兩點(點在點右側(cè)),與軸交于點

1)求拋物線的解析式和,兩點的坐標;

2)如圖1,若點是拋物線上兩點之間的一個動點(不與、重合),是否存在點,使四邊形的面積最大?若存在,求點的坐標及四邊形面積的最大值;若不存在,請說明理由;

3)如圖2,若點是拋物線上任意一點,過點軸的平行線,交直線于點,當時,求點的坐標.

查看答案和解析>>

同步練習冊答案