【題目】如圖,等邊△ABC和等邊△ECD的邊長相等,BC與CD兩邊在同一直線上,請根據(jù)如下要求,使用無刻度的直尺,通過連線的方式畫圖.
(1)在圖1中畫一個直角三角形; (2)在圖2中畫出∠ACE的平分線.
【答案】詳見解析.
【解析】試題分析:(1)直接利用等邊三角形的性質結合菱形的性質得出△ABD為直角三角形,同理可知,△BED也為直角三角形;
(2)利用菱形的判定與性質得出△AFG≌△EFH,得出FG=FH,進而結合角平分線的判定得出答案.
解:(1)如圖①所示:連接AE,
∵△ABC與△ECD全等且為等邊三角形,
∴四邊形ACDE為菱形,連接AD,則AD平分∠EDC,
∴∠ADC=30°,
∵∠ABC=60°,
∴∠BAD=90°,
則△ABD為直角三角形,同理可知,△BED也為直角三角形;
(2)如圖②所示:連接AE、BE、AD,則四邊形ABCE和四邊形ACDE為菱形,
則AC⊥BE,AD⊥CE,設BE,AD相交于F,AC交BE于點G,CE交AD于點H,
則FG⊥AC,FH⊥BC,
由(1)得:∠BEC=∠DAC,∠AEF=∠EAF,
則AF=EF,
在△AFG和△EFH中
∵∠AGF=∠FHE,
∠GFA=∠HFE,
AF=EF,
∴△AFG≌△EFH(AAS),
∴FG=FH,
由到角兩邊距離相等的點在角平分線上,可知,連接CF,GF為所作的角平分線.
科目:初中數(shù)學 來源: 題型:
【題目】某中學為了解本校學生對球類運動的愛好情況,采用抽樣的方法,從乒乓球、羽毛球、籃球和排球四個方面調查了若干名學生,在還沒有繪制成功的“折線統(tǒng)計圖”與“扇形統(tǒng)計圖”中,請你根據(jù)已提供的部分信息解答下列問題.
(1)在這次調查活動中,一共調查了 名學生,并請補全統(tǒng)計圖.
(2)“羽毛球”所在的扇形的圓心角是 度.
(3)若該校有學生1200名,估計愛好乒乓球運動的約有多少名學生?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩家體育用品商店出售同樣的乒乓球拍和乒乓球,乒乓球拍每副定價20元,乒乓球每盒定價5元.現(xiàn)兩家商店搞促銷活動,甲店的優(yōu)惠辦法是:每買一副乒乓球拍贈一盒乒乓球;乙店的優(yōu)惠辦法是:全部商品按定價的9折出售.某班需購買乒乓球拍4副,乒乓球若干盒(不少于4盒).
(1)當購買乒乓球的盒數(shù)為x盒時,在甲店購買需付款 元?在乙店 購買需付款 元?(用含x的代數(shù)式表示)
(2)當購買乒乓球盒數(shù)為10盒時,去哪家商店購買較合算?請計算說明.
(3) 當購買乒乓球盒數(shù)為10盒時,你能給出一種更為省錢的購買方案嗎?試寫出你的購買方案,并求出此時需付多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD∥BC,∠BAC=70°,DE⊥AC于點E,∠D=20°.
(1)求∠B的度數(shù),并判斷△ABC的形狀;
(2)若延長線段DE恰好過點B,試說明DB是∠ABC的平分線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A、B、C是圓O上的三點,且四邊形ABCO是平行四邊形,OF⊥OA交圓O于點F,則∠CBF等于( )
A.12.5°
B.15°
C.20°
D.22.5°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列變形中:
①由方程=2去分母,得x﹣12=10;
②由方程x=兩邊同除以,得x=1;
③由方程6x﹣4=x+4移項,得7x=0;
④由方程2﹣兩邊同乘以6,得12﹣x﹣5=3(x+3).
錯誤變形的個數(shù)是( 。﹤.
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某地區(qū)的電力資源豐富,并且得到了較好的開發(fā).該地區(qū)一家供電公司為了鼓勵居民用電,采用分段計費的方法來計算電費.月用電量x(度)與相應電費y(元)之間的函數(shù)圖像如圖所示.
(1)月用電量為100度時,應交電費 元;
(2)當x≥100時,求y與x之間的函數(shù)關系式;
(3)月用電量為260度時,應交電費多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有20筐白菜,以每筐25千克為標準,超過或不足的千克數(shù)分別用正、負數(shù)來表示,記錄如下:
與標準質量的差值(單位:千克) | ||||||
筐 數(shù) | 1 | 4 | 2 | 3 | 2 | 8 |
(1)20筐白菜中,最重的一筐比最輕的一筐重______千克;
(2)與標準重量比較,20筐白菜總計超過或不足多少千克?
(3)若白菜每千克售價元,則出售這20筐白菜可賣多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com