【題目】如圖,在四邊形ABCD中,AC=a,BD=b,且AC⊥BD,順次連接四邊形ABCD各邊中點(diǎn),得到四邊形A1B1C1D1,再順次連接四邊形A1B1C1D1各邊中點(diǎn),得到四邊形A2B2C2D2,…,如此進(jìn)行下去,得到四邊形AnBnCnDn.下列結(jié)論正確的是( )
①四邊形A4B4C4D4是菱形;②四邊形A3B3C3D3是矩形;③四邊形A7B7C7D7的周長為;④四邊形AnBnCnDn的面積為.
A. ①②③ B. ②③④ C. ①③④ D. ①②③④
【答案】A
【解析】①連接A1C1,B1D1.
∵在四邊形ABCD中,順次連接四邊形ABCD各邊中點(diǎn),得到四邊形A1B1C1D1,
∴A1D1∥BD,B1C1∥BD,C1D1∥AC,A1B1∥AC;
∴A1D1∥B1C1,A1B1∥C1D1,
∴四邊形A1B1C1D1是平行四邊形;
∵AC丄BD,
∴A1B1丄A1D1,
∴四邊形A1B1C1D1是矩形,
∴B1D1=A1C1(矩形的兩條對(duì)角線相等);
∴A2D2=C2D2=C2B2=B2A2(中位線定理),
∴四邊形A2B2C2D2是菱形;
∴四邊形A3B3C3D3是矩形;
∴根據(jù)中位線定理知,四邊形A4B4C4D4是菱形;
故①②正確;
③根據(jù)中位線的性質(zhì)易知,A7B7═A5B5=A3B3=A1B1=AC,B7C7=B5C5=B3C3=B1C1=BD,
∴四邊形A7B7C7D7的周長是2×(a+b)=,
故③正確;
④∵四邊形ABCD中,AC=a,BD=b,且AC丄BD,
∴S四邊形ABCD=ab÷2;
由三角形的中位線的性質(zhì)可以推知,每得到一次四邊形,它的面積變?yōu)樵瓉淼囊话耄?/span>
四邊形AnBnCnDn的面積是 ,
故④錯(cuò)誤;
綜上所述,①②③正確.
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若凸n邊形的每個(gè)外角都是36°,則從一個(gè)頂點(diǎn)出發(fā)引的對(duì)角線條數(shù)是( )
A. 6 B. 7 C. 8 D. 9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知方程組 .
(1)用含z的代數(shù)式表示x;
(2)若x,y,z都不大于10,求方程組的正整數(shù)解;
(3)若x=2y,z<m(m>0),且y>﹣1,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)科學(xué)家估計(jì),地球年齡大約是4 600 000 000年,這個(gè)數(shù)用科學(xué)記數(shù)法表示為( )
A.4.6×108
B.46×108
C.4.6×109
D.0.46×1010
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2013年,江陰市某樓盤以每平方米6500元的均價(jià)對(duì)外銷售,因?yàn)闃潜P滯銷,房地產(chǎn)開發(fā)商為了加快資金周轉(zhuǎn),決定進(jìn)行降價(jià)促銷,經(jīng)過連續(xù)兩年下調(diào)后,2015年的均價(jià)為每平方米5265元.
(1)求平均每年下調(diào)的百分率;
(2)假設(shè)2016年的均價(jià)仍然下調(diào)相同的百分率,張強(qiáng)準(zhǔn)備購買一套100平方米的住房,他持有現(xiàn)金20萬元,可以在銀行貸款30萬元,張強(qiáng)的愿望能否實(shí)現(xiàn)?(房價(jià)每平方米按照均價(jià)計(jì)算)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2008年8月8日北京奧運(yùn)會(huì)開幕式在國家體育場“鳥巢”舉行.“鳥巢”建筑面積為2580000000cm2 , 數(shù)字2580000000用科學(xué)記數(shù)法表示為( )
A.258×107
B.25.8×108
C.2.58×109
D.2.58×1010
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為10的菱形ABCD中,對(duì)角線BD=16,點(diǎn)O是直線BD上的動(dòng)點(diǎn),OE⊥AB于E,OF⊥AD于F.
(1)對(duì)角線AC的長是 ,菱形ABCD的面積是 ;
(2)如圖1,當(dāng)點(diǎn)O在對(duì)角線BD上運(yùn)動(dòng)時(shí),OE+OF的值是否發(fā)生變化?請(qǐng)說明理由;
(3)如圖2,當(dāng)點(diǎn)O在對(duì)角線BD的延長線上時(shí),OE+OF的值是否發(fā)生變化?若不變,請(qǐng)說明理由,若變化,請(qǐng)?zhí)骄縊E、OF之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CB是⊙O的切線,AF是⊙O的直徑,CN⊥AF于點(diǎn)N,BG⊥AF于點(diǎn)G,連接AB交CN于點(diǎn)M.
(1)寫出與點(diǎn)B有關(guān)的三條不同類型的結(jié)論.(2)、若AG=3FG,求tanA的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com