【題目】如圖,正方形中,點(diǎn)、分別是邊、的中點(diǎn),連接,若點(diǎn)為延長(zhǎng)線(xiàn)上一動(dòng)點(diǎn),連接,將線(xiàn)段以點(diǎn)為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn),得到線(xiàn)段,連接,則、、三者之間的數(shù)量關(guān)系為________.
【答案】.
【解析】
取BC的中點(diǎn)G,連接FG,根據(jù)同角的余角相等求出∠1=∠3,然后利用“邊角邊”證明△FQE和△FPG全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得QE=FG,BF=BG,再根據(jù)BG+GP=BP等量代換即可得證.
如圖,取BC的中點(diǎn)G,連接FG,
∵點(diǎn)E、F、G分別是正方形邊AD、AB、BC的中點(diǎn),
∴△AEF和△BGD是兩個(gè)全等的等腰直角三角形.
∴EF=FG,∠AFE=∠BFG=45°.
∴∠EFG=90°,即EF⊥FG.
根據(jù)旋轉(zhuǎn)的性質(zhì),FP=FQ,∠PFQ=90°.
∴∠GFP=∠GFE-∠EFP=90°-∠EFP,
∠EFQ=∠PFQ-∠EFP=90°-∠EFP.
∴∠GFP=∠EFQ.
在△FQE和△FPG中,
∵EF=GF,∠EFQ=∠GFP,F(xiàn)Q=FP,
∴△FQE≌△FPG(SAS).
∴EQ=GP.
∴EF=GF=GB=(BP-GP)=(BP-EQ),
故答案為:EF=(BP-EQ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分9分)如圖,點(diǎn)O為Rt△ABC斜邊AB上的一點(diǎn),以OA為半徑的⊙O與BC切于點(diǎn)D,與AC交于點(diǎn)E,連接AD.
(1)求證:AD平分∠BAC;
(2)若∠BAC = 60°,OA = 2,求陰影部分的面積(結(jié)果保留).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為落實(shí)黨中央“長(zhǎng)江大保護(hù)”新發(fā)展理念,我市持續(xù)推進(jìn)長(zhǎng)江岸線(xiàn)保護(hù),還洞庭湖和長(zhǎng)江水清岸綠的自然生態(tài)原貌.某工程隊(duì)負(fù)責(zé)對(duì)一面積為33000平方米的非法砂石碼頭進(jìn)行拆除,回填土方和復(fù)綠施工,為了縮短工期,該工程隊(duì)增加了人力和設(shè)備,實(shí)際工作效率比原計(jì)劃每天提高了20%,結(jié)果提前11天完成任務(wù),求實(shí)際平均每天施工多少平方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了發(fā)展鄉(xiāng)村旅游,某村準(zhǔn)備在河道上修一座與河道垂直的橋,如圖(1)所示,直線(xiàn)l,m代表河流的兩岸河道,且l∥m,點(diǎn)A是某村自助農(nóng)場(chǎng)的所在地,點(diǎn)B是某村游樂(lè)場(chǎng)所在地.
問(wèn)題1:造橋選址橋準(zhǔn)備選在到A,B兩地的距離之和剛好為最小的點(diǎn)C處,即在直線(xiàn)l上找一點(diǎn)C,使AC+BC的值為最。(qǐng)利用你所學(xué)的知識(shí)在圖(1)中作出點(diǎn)C的位置,并簡(jiǎn)單說(shuō)明你所設(shè)計(jì)方案的原理;
問(wèn)題2:測(cè)量河寬:在測(cè)量河道的寬度時(shí)施工隊(duì)在河道南側(cè)的開(kāi)闊地用以下方法(如圖2所示):①作CD⊥l,與河對(duì)岸的直線(xiàn)m相交于D;②在直線(xiàn)m上取E,F兩點(diǎn),使得DE=EF=10米;③過(guò)點(diǎn)F作m的垂線(xiàn)FG,使得點(diǎn)G與C,E兩點(diǎn)在同一直線(xiàn)上;④測(cè)量FG的長(zhǎng)度為20米.請(qǐng)你確定河道的寬度,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A(0,5),B(12,0),在y軸負(fù)半軸上取點(diǎn)E,使OA=EO,作∠CEF=∠AEB,直線(xiàn)CO交BA的延長(zhǎng)線(xiàn)于點(diǎn)D.
(1)根據(jù)題意,可求得OE= ;
(2)求證:△ADO≌△ECO;
(3)動(dòng)點(diǎn)P從E出發(fā)沿E﹣O﹣B路線(xiàn)運(yùn)動(dòng)速度為每秒1個(gè)單位,到B點(diǎn)處停止運(yùn)動(dòng);動(dòng)點(diǎn)Q從B出發(fā)沿B﹣O﹣E運(yùn)動(dòng)速度為每秒3個(gè)單位,到E點(diǎn)處停止運(yùn)動(dòng).二者同時(shí)開(kāi)始運(yùn)動(dòng),都要到達(dá)相應(yīng)的終點(diǎn)才能停止.在某時(shí)刻,作PM⊥CD于點(diǎn)M,QN⊥CD于點(diǎn)N.問(wèn)兩動(dòng)點(diǎn)運(yùn)動(dòng)多長(zhǎng)時(shí)間△OPM與△OQN全等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一條船上午點(diǎn)在處望見(jiàn)西南方向有一座燈塔(如圖),此時(shí)測(cè)得船和燈塔相距海里,船以每小時(shí)海里的速度向南偏西的方向航行到處,這時(shí)望見(jiàn)燈塔在船的正北方向.(參考數(shù)據(jù):,).
求幾點(diǎn)鐘船到達(dá)處;
求船到達(dá)處時(shí)與燈塔之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某校數(shù)學(xué)興趣小組在樓的頂部處測(cè)得該樓正前方旗桿的頂端的俯角為,在樓的底部處測(cè)得旗桿的頂端的仰角為,已知旗桿的高度為,根據(jù)測(cè)得的數(shù)據(jù),計(jì)算樓的高度(結(jié)果保留整數(shù)).
參考數(shù)據(jù):,,.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(x>0,m≠0)的圖象交于點(diǎn)C,與x軸、y軸分別交于點(diǎn)D、B,已知OB=3,點(diǎn)C的橫坐標(biāo)為4,cos∠0BD=
(1)求一次函數(shù)及反比例函數(shù)的表達(dá)式;
(2)將一次函數(shù)圖象向下平移,使其經(jīng)過(guò)原點(diǎn)O,與反比例函數(shù)圖象在第四象限內(nèi)的交點(diǎn)為A,連接AC,求四邊形OACB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一輛慢車(chē)從甲地勻速行駛至乙地,一輛快車(chē)同時(shí)從乙地出發(fā)勻速行駛至甲地,兩車(chē)之間的距離y(千米)與行駛時(shí)間x(小時(shí))的對(duì)應(yīng)關(guān)系如圖所示,下列敘述正確的是( )
A. 甲乙兩地相距1200千米
B. 快車(chē)的速度是80千米∕小時(shí)
C. 慢車(chē)的速度是60千米∕小時(shí)
D. 快車(chē)到達(dá)甲地時(shí),慢車(chē)距離乙地100千米
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com