【題目】如圖,點(diǎn)B在線段AC上,點(diǎn)E在線段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M、N分別是AE、CD的中點(diǎn),判斷BM與BN的關(guān)系,并說明理由.
【答案】解:BM=BN,BM⊥BN,
理由是:在△ABE和△DBC中,
,
∴△ABE≌△DBC(SAS),
∴AE=DC,∠EAB=∠BDC,∠AEB=∠DCB,
∵∠ABD=∠DBC,∠ABD+∠DBC=180°,
∴∠ABD=∠DBC=90°,
∵M(jìn)為AE的中點(diǎn),N為CD的中點(diǎn),
∴BM=AM=EM= AE,BN=CN=DN= CD,
∴BM=BN,∠EAB=∠MBA,∠CDB=∠DBN,∠AEB=∠EBM,∠NCB=∠NBC,
∵∠EAB=∠BDC,∠AEB=∠DCB,
∴∠ABM=∠DBN,∠EBM=∠NBC,
∴∠ABC=2∠DBN+2∠EBM=180°,
∴∠EBN+∠EBM=90°,
∴BM⊥BN.
【解析】根據(jù)SAS推出△ABE≌△DBC,推出AE=DC,∠EAB=∠BDC,∠AEB=∠DCB,求出∠ABD=∠DBC=90°,BM=AM=EM= AE,BN=CN=DN= CD,推出∠ABM=∠DBN,∠EBM=∠NBC即可.
【考點(diǎn)精析】本題主要考查了直角三角形斜邊上的中線的相關(guān)知識(shí)點(diǎn),需要掌握直角三角形斜邊上的中線等于斜邊的一半才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一家商場將某種型號(hào)的彩電按物價(jià)部門核準(zhǔn)的最高售價(jià)提高30%,然后標(biāo)出”“大酬賓,八折優(yōu)惠,經(jīng)顧客投訴后,執(zhí)法部門按所得的非法收入的10倍處以每臺(tái)1000元的罰款,則每臺(tái)的彩電按物價(jià)部門核準(zhǔn)的最高售價(jià)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列事件是確定事件的是
A. 我校同學(xué)中間出現(xiàn)一位數(shù)學(xué)家
B. 從一副撲克牌中抽出一張,恰好是大王
C. 從裝著九個(gè)紅球、一個(gè)白球共十個(gè)球的袋中任意摸出兩個(gè),其中一定有紅球
D. 未來十年內(nèi),印度洋地區(qū)不會(huì)發(fā)生海嘯
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將下列推證過程補(bǔ)充完整.
(1)如圖1,在△ABC中,AE是中線,AD是角平分線,AF是高.
①BE== ;
②∠BAD== ;
③∠AFB==90°;
④S△ABC= .
(2)如圖2,AB∥CD,∠BAE=∠DCE=45°,
∵AB∥CD
∴∠1+45°+∠2+45°= .
∴∠1+∠2= .
∴∠E= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上的點(diǎn)A到原點(diǎn)的距離是4,則點(diǎn)A表示的數(shù)為( )
A.4
B.﹣4
C.4或﹣4
D.2或﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與CD相交于O.OF是∠BOD的平分線,OE⊥OF.
(1)若∠BOE比∠DOF大38°,求∠DOF和∠AOC的度數(shù);
(2)試問∠COE與∠BOE之間有怎樣的大小關(guān)系?請(qǐng)說明理由.
(3)∠BOE的余角是 ,∠BOE的補(bǔ)角是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明同學(xué)要測量公園內(nèi)被湖水隔開的兩顆大樹A和B之間的距離,他在A處測得大樹B在A的北偏西30°方向,他從A處出發(fā)向北偏東15°方向走了200米到達(dá)C處,測得大樹B在C的北偏西60°的方向.
(1)求∠ABC的度數(shù);
(2)求兩棵大樹A和B之間的距離(結(jié)果精確到1米;參考數(shù)據(jù), , ).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com