【題目】如圖,已知四邊形ABCD是矩形,把矩形沿直線AC折疊,點(diǎn)B落在點(diǎn)E處,連接DE.若DE:AC=3:5,則 的值為( )
A.
B.
C.
D.
【答案】A
【解析】解:∵矩形沿直線AC折疊,點(diǎn)B落在點(diǎn)E處,
∴∠BAC=∠EAC,AE=AB=CD,
∵矩形ABCD的對(duì)邊AB∥CD,
∴∠DCA=∠BAC,
∴∠EAC=∠DCA,
設(shè)AE與CD相交于F,則AF=CF,
∴AE﹣AF=CD﹣CF,
即DF=EF,
∴ = ,
又∵∠AFC=∠EFD,
∴△ACF∽△EDF,
∴ = = ,
設(shè)DF=3x,F(xiàn)C=5x,則AF=5x,
在Rt△ADF中,AD= = =4x,
又∵AB=CD=DF+FC=3x+5x=8x,
∴ = = .
故選A.
根據(jù)翻折的性質(zhì)可得∠BAC=∠EAC,再根據(jù)矩形的對(duì)邊平行可得AB∥CD,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠DAC=∠BCA,從而得到∠EAC=∠DAC,設(shè)AE與CD相交于F,根據(jù)等角對(duì)等邊的性質(zhì)可得AF=CF,再求出DF=EF,從而得到△ACF和△EDF相似,根據(jù)相似三角形對(duì)應(yīng)邊成比例求出 = ,設(shè)DF=3x,F(xiàn)C=5x,在Rt△ADF中,利用勾股定理列式求出AD,再根據(jù)矩形的對(duì)邊相等求出AB,然后代入進(jìn)行計(jì)算即可得解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,科技小組準(zhǔn)備用材料圍建一個(gè)面積為60m2的矩形科技園ABCD,其中一邊AB靠墻,墻長(zhǎng)為12 m.設(shè)AD的長(zhǎng)為x m,DC的長(zhǎng)為y m.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若圍成矩形科技園ABCD的三邊材料總長(zhǎng)不超過(guò)26m,材料AD和DC的長(zhǎng)都是整米數(shù),求出滿足條件的所有圍建方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用兩種方法證明“三角形的外角和等于360°”.
已知:如圖,∠BAE,∠CBF,∠ACD是△ABC的三個(gè)外角.
求證:∠BAE+∠CBF+∠ACD=360°.
證法1:∵________________________________________________________________,
∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,
∴∠BAE+∠CBF+∠ACD=540°-(∠1+∠2+∠3).
∵______________,
∴∠BAE+∠CBF+∠ACD=540°-180°=360°.
請(qǐng)把證法1補(bǔ)充完整,并用不同的方法完成證法2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為a,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿折線A→B→D→C→A的路徑運(yùn)動(dòng),回到點(diǎn)A時(shí)運(yùn)動(dòng)停止.設(shè)點(diǎn)P運(yùn)動(dòng)的路程長(zhǎng)為x,AP長(zhǎng)為y,則y關(guān)于x的函數(shù)圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解我市的空氣質(zhì)量情況,某環(huán)保興趣小組從環(huán)境監(jiān)測(cè)網(wǎng)隨機(jī)抽取了若干天的空氣質(zhì)量情況作為樣本進(jìn)行統(tǒng)計(jì),繪制了如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(部分信息未給出).
請(qǐng)你根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)計(jì)算被抽取的天數(shù);
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖,并求扇形統(tǒng)計(jì)圖中表示“優(yōu)”的扇形的圓心角度數(shù);
(3)請(qǐng)估計(jì)該市這一年(365天)達(dá)到“優(yōu)”和“良”的總天數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,O為坐標(biāo)原點(diǎn),點(diǎn)B在x軸的正半軸上,四邊形OACB是平行四邊形,sin∠AOB= ,反比例函數(shù)y= (k>0)在第一象限內(nèi)的圖象經(jīng)過(guò)點(diǎn)A,與BC交于點(diǎn)F.
(1)若OA=10,求反比例函數(shù)解析式;
(2)若點(diǎn)F為BC的中點(diǎn),且△AOF的面積S=12,求OA的長(zhǎng)和點(diǎn)C的坐標(biāo);
(3)在(2)中的條件下,過(guò)點(diǎn)F作EF∥OB,交OA于點(diǎn)E(如圖②),點(diǎn)P為直線EF上的一個(gè)動(dòng)點(diǎn),連接PA,PO.是否存在這樣的點(diǎn)P,使以P、O、A為頂點(diǎn)的三角形是直角三角形?若存在,請(qǐng)直接寫(xiě)出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】等邊三角形ABC的邊長(zhǎng)為6,在AC,BC邊上各取一點(diǎn)E,F(xiàn),連接AF,BE相交于點(diǎn)P.
(1)若AE=CF; ①求證:AF=BE,并求∠APB的度數(shù);
②若AE=2,試求APAF的值;
(2)若AF=BE,當(dāng)點(diǎn)E從點(diǎn)A運(yùn)動(dòng)到點(diǎn)C時(shí),試求點(diǎn)P經(jīng)過(guò)的路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩輛貨車分別從、兩地出發(fā),沿同一條公路相向而行,當(dāng)?shù)竭_(dá)對(duì)方的出發(fā)地后立即裝卸貨物,5分鐘后再按原路以原速度返回各自的出發(fā)地,已知、兩地相距100千米.甲車比乙車早5分鐘出發(fā),甲車出發(fā)10分鐘時(shí)兩車都行駛了10千米,甲、乙兩車離各自出發(fā)地的路程(千米)與甲車出發(fā)時(shí)間 (分鐘)的函數(shù)圖像如圖所示.
(1)甲車從地出發(fā)后,經(jīng)過(guò)多長(zhǎng)時(shí)間甲、乙兩車第一次相遇?
(2)乙車從地出發(fā)后,經(jīng)過(guò)多長(zhǎng)時(shí)間甲、乙兩車與各自出發(fā)地的距離相等?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com