(2013•東營(yíng))如圖,圓柱形容器中,高為1.2m,底面周長(zhǎng)為1m,在容器內(nèi)壁離容器底部0.3m的點(diǎn)B處有一蚊子,此時(shí)一只壁虎正好在容器外壁,離容器上沿0.3m與蚊子相對(duì)的點(diǎn)A處,則壁虎捕捉蚊子的最短距離為
1.3
1.3
m(容器厚度忽略不計(jì)).
分析:將容器側(cè)面展開(kāi),建立A關(guān)于EF的對(duì)稱(chēng)點(diǎn)A′,根據(jù)兩點(diǎn)之間線(xiàn)段最短可知A′B的長(zhǎng)度即為所求.
解答:解:如圖:
∵高為1.2m,底面周長(zhǎng)為1m,在容器內(nèi)壁離容器底部0.3m的點(diǎn)B處有一蚊子,
此時(shí)一只壁虎正好在容器外壁,離容器上沿0.3m與蚊子相對(duì)的點(diǎn)A處,
∴A′D=0.5m,BD=1.2m,
∴將容器側(cè)面展開(kāi),作A關(guān)于EF的對(duì)稱(chēng)點(diǎn)A′,
連接A′B,則A′B即為最短距離,
A′B=
A′D2+BD2

=
0.52+1.22

=1.3(m).
故答案為:1.3.
點(diǎn)評(píng):本題考查了平面展開(kāi)---最短路徑問(wèn)題,將圖形展開(kāi),利用軸對(duì)稱(chēng)的性質(zhì)和勾股定理進(jìn)行計(jì)算是解題的關(guān)鍵.同時(shí)也考查了同學(xué)們的創(chuàng)造性思維能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•東營(yíng))如圖,已知AB∥CD,AD和BC相交于點(diǎn)O,∠A=50°,∠AOB=105°,則∠C等于(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•東營(yíng))如圖,正方形ABCD中,分別以B、D為圓心,以正方形的邊長(zhǎng)a為半徑畫(huà)弧,形成樹(shù)葉形(陰影部分)圖案,則樹(shù)葉形圖案的周長(zhǎng)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•東營(yíng))如圖,AB為⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),若∠BAC=∠CAM,過(guò)點(diǎn)C作直線(xiàn)l垂直于射線(xiàn)AM,垂足為點(diǎn)D.
(1)試判斷CD與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若直線(xiàn)l與AB的延長(zhǎng)線(xiàn)相交于點(diǎn)E,⊙O的半徑為3,并且∠CAB=30°,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•東營(yíng))如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=nx+2(n≠0)的圖象與反比例函數(shù)y=
m
x
(m≠0)
在第一象限內(nèi)的圖象交于點(diǎn)A,與x軸交于點(diǎn)B,線(xiàn)段OA=5,C為x軸正半軸上一點(diǎn),且sin∠AOC=
4
5

(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△AOB的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案