【題目】如圖,直線y=-3x與雙曲線y在第四象限內的部分相交于點Aa,-6),將這條直線向

上平移后與該雙曲線交于點M,且△AOM的面積為3.

(1)求k的值;

(2)求平移后得到的直線的函數(shù)表達式.

【答案】(1)k=-12; (2) y=-3x3.

【解析】

試題(1)將點A代入直線解析式,從而得到A點坐標,再代入反比例函數(shù)解析式即可求得k;

(2)設平移后的直線交y軸于點B,連AB,根據(jù)平移可知OA//BM,又△AOM與△BOM有一條公共邊OM,從而可得SOAMSOAB從而可得點B的坐標,根據(jù)直線平行時k值不變,利用待定系數(shù)法即可進行求解.

試題解析:(1)當y6時,x=2,∴A(2,6),

x=2,y6代入y得:k=-12;

(2)設平移后的直線交y軸于點B,連AB

由平移知BMOA,∴SOAMSOAB

又∵SOAM=3,∴SOAB=3,即×OB×2=3,得OB=3,即B(0,3),

設平移后的直線的函數(shù)表達式為y=-3xb,把x=0,y=3代入得b=3,

平移后的直線的函數(shù)表達式為y=-3x3.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)y= 的圖象如圖,以下結論:
①m<0;
②在每個分支上y隨x的增大而增大;
③若點A(﹣1,a)、點B(2,b)在圖象上,則a<b;
④若點P(x,y)在圖象上,則點P1(﹣x,﹣y)也在圖象上.
其中正確的個數(shù)是(

A.4個
B.3個
C.2個
D.1個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E在正方形ABCD的邊CD上,把△ADE繞點A順時針旋轉90°至△ABF位置,如果AB= ,∠EAD=30°,那么點E與點F之間的距離等于

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,△ABC中,BO,CO分別是∠ABC和∠ACB的平分線,過O點的直線分別交AB、AC于點D、E,且DEBC.若AB=6 cm,AC=8 cm,則△ADE的周長為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù)y= ,在下列結論中,不正確的是( )
A.圖象必經(jīng)過點(1,2)
B.y隨x的增大而減少
C.圖象在第一、三象限
D.若x>1,則y<2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中已知點Aa,3),P在坐標軸上,若使得AOP是等腰三角形的點P恰有6,則滿足條件的a值有( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一批單價為20元的商品,若每件按24元的價格銷售時,每天能賣出36件;若每件按29元的價格銷售時,每天能賣出21件.假定每天銷售件數(shù)y(件)與銷售價格x(元/件)滿足一個以x為自變量的一次函數(shù).
(1)求y與x滿足的函數(shù)關系式(不要求寫出x的取值范圍);
(2)在不積壓且不考慮其他因素的情況下,銷售價格定為多少元時,才能使每天獲得的利潤P最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖1,AC=AE,∠1=∠2,∠C=∠E.求證:BC=DE.

(2)如圖2,在△ABC中,AB=AC,D為BC中點,∠BAD=30°,求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一張直角三角形ABC紙片沿斜邊AB上的中線CD剪開,得到△ACD,再將△ACD沿DB方向平移到△A′C′D′的位置,若平移開始后點D′未到達點B時,A′C′交CD于E,D′C′交CB于點F,連接EF,當四邊形EDD′F為菱形時,試探究△A′DE的形狀,并判斷△A′DE與△EFC′是否全等?請說明理由.

查看答案和解析>>

同步練習冊答案