如圖,AB是半圓O的直徑,AB=10,過(guò)點(diǎn)A的直線交半圓于點(diǎn)C,且AC=6,連結(jié)BC,點(diǎn)D為BC的中點(diǎn).已知點(diǎn)E在直線AC上,△CDE與△ACB相似,則線段AE的長(zhǎng)為   
【答案】分析:根據(jù)E點(diǎn)在直線AC上,得出對(duì)應(yīng)點(diǎn)不同求出的EC長(zhǎng)度不同,分別得出即可.
解答:解:∵AB是半圓O的直徑,
∴∠ACB=90°,
∵AB=10,AC=6,
∴BC==8,
∵點(diǎn)D為BC的中點(diǎn),
∴CD=4,
當(dāng)DE∥AB時(shí),
△CED∽△CAB,
=
=,
解得:EC=3,
∴AE=6-EC=3,
當(dāng)=,且∠ACB=∠DCE′時(shí),△CE′D∽△CBA,
=,
解得:CE′=
∴AE′=6-=;
當(dāng)=,且∠ACB=∠DCE1時(shí),△CE1D∽△CBA,
=,
解得:CE1=,
∴AE1=6+=;
當(dāng)=,且∠ACB=∠DCE″時(shí),△CE″D∽△CBA,
=,
解得:CE″=3,
∴AE″=6+3=9;
綜上所述:點(diǎn)E在直線AC上,△CDE與△ACB相似,則線段AE的長(zhǎng)為3或或9或
故答案為:3或或9或
點(diǎn)評(píng):此題主要考查了相似三角形的判定與性質(zhì),注意在直線AC上有一點(diǎn)E,進(jìn)行分類(lèi)討論得出是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AB是半圓O的直徑,AC是弦,點(diǎn)P從點(diǎn)B開(kāi)始沿BA邊向點(diǎn)A以1cm/s的速度移動(dòng),若AB長(zhǎng)為10cm,點(diǎn)O到AC的距離為4cm.
(1)求弦AC的長(zhǎng);
(2)問(wèn)經(jīng)過(guò)幾秒后,△APC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,AB是半圓O的直徑,OD是半徑,BM切半圓于點(diǎn)B,OC與弦AD平行交BM于點(diǎn)C.
(1)求證:CD是半圓O的切線;
(2)若AB的長(zhǎng)為4,點(diǎn)D在半圓O上運(yùn)動(dòng),當(dāng)AD的長(zhǎng)為1時(shí),求點(diǎn)A到直線CD的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AB是半圓O的直徑,點(diǎn)D是半圓上一動(dòng)點(diǎn),AB=10,AC=8,當(dāng)△ACD是等腰三角形時(shí),點(diǎn)D到AB的距離是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB是半圓O的直徑,以O(shè)A為直徑的半圓O′與弦AC交于點(diǎn)D,O′E∥AC,并交OC于點(diǎn)E,則下列結(jié)論:①S△O′OE=
1
2
S△AOC2;②點(diǎn)D時(shí)AC的中點(diǎn);③
AC
=2AD;④四邊形O′DEO是菱形.其中正確的結(jié)論是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB是半圓O的直徑,過(guò)點(diǎn)O作弦AD的垂線交半圓O于點(diǎn)E,F(xiàn)為垂足,交AC于點(diǎn)C使∠BED=∠C.請(qǐng)判斷直線AC與圓O的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案