精英家教網 > 初中數學 > 題目詳情

【題目】如圖:

(1)(問題背景)如圖1,等腰△ABC,AB=AC,BAC=120°,則=________.

(2)(遷移應用)如圖2,△ABC和△ABE都是等腰三角形,∠BAC=DAE=120°,D,E,C三點在同-條直線上,連結BD.求線段ADBD,CD之間的數量關系式;

(3)(拓展延伸)如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內作射線BM,作點C關于BM的對稱點E,連結AE并延長交BM于點F,連結CE, CF.若AE=4CE=1.求BF的長.

【答案】(1);(2)CD=AD+BD;(3)2.

【解析】

問題背景:作ADBCD,根據等腰三角形的性質得到BD=CD,根據三角形內角和定理求出∠ABC,根據余弦的定義計算即可;

遷移應用:證明DAB≌△EAC,根據全等三角形的性質得到BD=CE,由問題背景得到CD、ADBD的關系;

拓展延伸:作BGAEG,連接BE.由BM垂直平分CE,可得∠EBF=CBF,再根據AB=BE,BGAE,可得∠ABG=EBG,進而得出∠GBF=ABC=60°,在四邊形BCEG中,求得∠CEG=120°,得到∠CEF=60°,依據FE=FC,得到EFC是等邊三角形,由AE=4,EC=EF=1,可得AG=GE=2,FG=3,再根據在RtBGF中,∠BFG=30°,即可得到BF

問題背景:如圖1,作ADBCD,

AB=AC,∠BAC=120°,

BD=CD,∠ABC=30°

cosB=,即,

BC=AB,即,

故答案為;

遷移應用:如圖2,∵∠BAC=DAE,

∴∠DAB=EAC,

DABEAC中,

∴△DAB≌△EACSAS),

BD=CE,

由問題背景可知,DE=AD,

CD=DE+EC=AD+BD

拓展延伸:證明:如圖3,作BGAEG,連接BE

E、C關于BM對稱,

BC=BE,FE=FCBFCE,

∴∠EBF=CBF,

∵在菱形ABCD中,AB=BC,∠ABC=120°,

AB=BE,又BGAE,

∴∠ABG=EBG,

∴∠EBG+EBF=ABC=60°

∴四邊形BNEG中,∠CEG=360°-90°-90°-60°=120°,

∴∠CEF=60°,又FE=FC

∴△EFC是等邊三角形,

AE=4,EC=EF=1

AG=GE=2,FG=3,

RtBGF中,∠BFG=30°,

BF==2

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】己知:如圖,在平面直角坐標系中,直線軸、軸分別交于兩點,是直線上一動點,⊙的半徑為2

1)判斷原點與⊙的位置關系,并說明理由;

2)當⊙軸相切時,求出切點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】定義:形如y|G|G為用自變量表示的代數式)的函數叫做絕對值函數.

例如,函數y|x1|y,y|x2+2x+3|都是絕對值函數.

絕對值函數本質是分段函數,例如,可以將y|x|寫成分段函數的形式:

探索并解決下列問題:

1)將函數y|x1|寫成分段函數的形式;

2)如圖1,函數y|x1|的圖象與x軸交于點A1,0),與函數y的圖象交于BC兩點,過點Bx軸的平行線分別交函數y,y|x1|的圖象于D,E兩點.求證ABE∽△CDE

3)已知函數y|x2+2x+3|的圖象與y軸交于F點,與x軸交于M,N兩點(點M在點N的左邊),點P在函數y|x2+2x+3|的圖象上(點P與點F不重合),PHx軸,垂足為H.若PMHMOF相似,請直接寫出所有符合條件的點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了促進學生多樣化發(fā)展,某校組織開展了社團活動,分別設置了體育類、藝術類、文學類及其它類社團(要求人人參與社團,每人只能選擇一項).為了解學生喜愛哪種社團活動,學校做了一次抽樣調查.根據收集到的數據,繪制成如下兩幅不完整的統(tǒng)計圖,請根據圖中提供的信息,完成下列問題:

1)此次共調查了多少人?

2)求體育社團在扇形統(tǒng)計圖中所占圓心角的度數;

3)請將條形統(tǒng)計圖補充完整;

4)若該校有3000名學生,請估計喜歡文學類社團的學生有多少人?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4cm,點E,F分別是BC,CD的中點,連結BF,DE,則圖中陰影部分的面積是________cm2.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】中華文明,源遠流長;中華漢字,寓意深廣.為了傳承中華民族優(yōu)秀傳統(tǒng)文化,我市某中學舉行“漢字聽寫”比賽,賽后整理參賽學生的成績,將學生的成績分為AB,C,D四個等級,并將結果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,但均不完整.

請你根據統(tǒng)計圖解答下列問題:

1)參加比賽的學生共有____名;

2)在扇形統(tǒng)計圖中,m的值為____,表示“D等級”的扇形的圓心角為____度;

3)組委會決定從本次比賽獲得A等級的學生中,選出2名去參加全市中學生“漢字聽寫”大賽.已知A等級學生中男生有1名,請用列表法或畫樹狀圖法求出所選2名學生恰好是一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小夏同學從家到學校有兩條不同的公交線路.為了解早高峰期間這三條線路上的公交車從甲地到乙地的用時情況,在每條線路上隨機選取了500個班次的公交車,收集了這些班次的公交車用時(單位:分鐘)的數據,統(tǒng)計如下:

公交車用時

頻數

公交車路線

總計

59

151

166

124

500

43

57

149

251

500

據此估計,早高峰期間,乘坐線路用時不超過35分鐘的概率為__________,若要在40分鐘之內到達學校,應盡量選擇乘坐__________(填)線路.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC的三個頂點都在邊長為1的小正方形組成的網格的格點上,以點O為原點建立直角坐標系,回答下列問題:

(1)將ABC先向上平移5個單位,再向右平移1個單位得到△A1B1C1,畫出△A1B1C1,并直接寫出A1的坐標   ;

(2)將△A1B1C1繞點(0,﹣1)順時針旋轉90°得到△A2B2C2,畫出A2B2C2;

(3)觀察圖形發(fā)現(xiàn),A2B2C2是由ABC繞點   順時針旋轉   度得到的.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知拋物線yax2bxca≠0)的對稱軸為直線x2,與x軸的一個交點坐標為(4,0),其部分圖象如圖所示,下列結論正確的是( 。

A.x2時,yx增大而增大B.abc0

C.拋物線過點(-40D.4ab0

查看答案和解析>>

同步練習冊答案