【題目】如圖,已知AB為⊙O的直徑,點(diǎn)C,E在⊙O上,且sin∠ACE=,點(diǎn)D為弧BE中點(diǎn),連結(jié)DE,則的值為_____.
【答案】
【解析】
連接OD,BD,AD,AE,BE,得到∠ACE=∠ABE,求得sin∠ABE==
,設(shè)AE=x,AB=5x,根據(jù)勾股定理得到BE==2x,根據(jù)垂徑定理得到OD⊥BE,OD平分BE,設(shè)OD,BE相交于H,得到BH=EH=x,根據(jù)勾股定理得到OH==x,求得DH=x,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.
解:連接OD,BD,AD,AE,BE,
∴∠ACE=∠ABE,
∵sin∠ACE=,
∴sin∠ABE==,
∴設(shè)AE=x,AB=5x,
∴BE==2x,
∵點(diǎn)D為弧BE中點(diǎn),
∴OD⊥BE,OD平分BE,
設(shè)OD,BE相交于H,
∴BH=EH=x,
∴OH==x2,
∴DH=x2,
∵∠BAD=∠DBH,∠ADB=∠BHD=90°,
∴△BDH∽△ABD,
∴,
∴==,
∴BD2=x,
∴AD2=x,
∵點(diǎn)D為弧BE中點(diǎn),
∴BD=DE,
∴==,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于A(1,4),B(4,n)兩點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)直接寫(xiě)出當(dāng)x>0時(shí),的解集.
(3)點(diǎn)P是x軸上的一動(dòng)點(diǎn),試確定點(diǎn)P并求出它的坐標(biāo),使PA+PB最。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a是一元二次方程x2﹣2x-1=0的兩個(gè)實(shí)數(shù)根中較小的根.
(1)求a2﹣2a+2016的值;
(2)化簡(jiǎn)求值:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,以點(diǎn)A為旋轉(zhuǎn)中心,將繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),得,連接,若,則的大小是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),點(diǎn),點(diǎn).
(Ⅰ)如圖①,求AB的長(zhǎng);
(Ⅱ)如圖②,把圖①中的繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使點(diǎn)O的對(duì)應(yīng)點(diǎn)AM恰好落在OA延長(zhǎng)線上,N是點(diǎn)A旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn).
①求證:;②求點(diǎn)N的坐標(biāo);
(Ⅲ)點(diǎn)C是OB的中點(diǎn),點(diǎn)D為線段OA上的動(dòng)點(diǎn),在繞點(diǎn)B順時(shí)針旋轉(zhuǎn)過(guò)程中,點(diǎn)D的對(duì)應(yīng)點(diǎn)是P,求線段CP長(zhǎng)的取值范圍(直接寫(xiě)出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=2x﹣8分別交x軸、y軸于點(diǎn)A、點(diǎn)B,拋物線y=ax2+bx(a≠0)經(jīng)過(guò)點(diǎn)A,且頂點(diǎn)Q在直線AB上.
(1)求a,b的值.
(2)點(diǎn)P是第四象限內(nèi)拋物線上的點(diǎn),連結(jié)OP、AP、BP,設(shè)點(diǎn)P的橫坐標(biāo)為t,△OAP的面積為s1,△OBP的面積為s2,記s=s1+s2,試求s的最值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線C1:y=ax2﹣2ax+c(a<0)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.已知點(diǎn)A的坐標(biāo)為(﹣1,0),點(diǎn)O為坐標(biāo)原點(diǎn),OC=3OA,拋物線C1的頂點(diǎn)為G.
(1)求出拋物線C1的解析式,并寫(xiě)出點(diǎn)G的坐標(biāo);
(2)如圖2,將拋物線C1向下平移k(k>0)個(gè)單位,得到拋物線C2,設(shè)C2與x軸的交點(diǎn)為A′、B′,頂點(diǎn)為G′,當(dāng)△A′B′G′是等邊三角形時(shí),求k的值:
(3)在(2)的條件下,如圖3,設(shè)點(diǎn)M為x軸正半軸上一動(dòng)點(diǎn),過(guò)點(diǎn)M作x軸的垂線分別交拋物線C1、C2于P、Q兩點(diǎn),試探究在直線y=﹣1上是否存在點(diǎn)N,使得以P、Q、N為頂點(diǎn)的三角形與△AOQ全等,若存在,直接寫(xiě)出點(diǎn)M,N的坐標(biāo):若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為迎接市教育局開(kāi)展的“創(chuàng)先爭(zhēng)優(yōu)”主題演講活動(dòng),某校組織黨員教師進(jìn)行演講預(yù)賽.學(xué)校將所有參賽教師的成績(jī)(得分為整數(shù),滿分為100分)分成四組,繪制了不完整的統(tǒng)計(jì)圖表如下:
組別 | 成績(jī)x | 組中值 | 頻數(shù) |
第一組 | 90≤x≤100 | 95 | 4 |
第二組 | 80≤x<90 | 85 | |
第三組 | 70≤x<80 | 75 | 8 |
第四組 | 60≤x<70 | 65 |
觀察圖表信息,回答下列問(wèn)題:
(1)參賽教師共有 人;
(2)如果將各組的組中值視為該組的平均成績(jī),請(qǐng)你估算所有參賽教師的平均成績(jī);
(3)成績(jī)落在第一組的恰好是兩男兩女四位教師,學(xué)校從中隨機(jī)挑選兩位教師參加市教育局組織的決賽.通過(guò)列表或畫(huà)樹(shù)狀圖求出挑選的兩位教師是一男一女的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com