【題目】一塊長和寬分別為40厘米和25厘米的長方形鐵皮,要在它的四角截去四個(gè)相等的小正方形,折成一個(gè)無蓋的長方體紙盒,使它的底面積為450平方厘米.那么紙盒的高是多少?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知公路l上A、B兩點(diǎn)之間的距離為50m,小明要測量點(diǎn)C與河對岸邊公路l的距離,測得∠ACB=∠CAB=30°.點(diǎn)C到公路l的距離為( )
A. 25m B. m C. 25m D. (25+25)m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,平行四邊形ABCD,對角線AC與BD相交于點(diǎn)E,點(diǎn)G為AD的中點(diǎn),連接CG,CG的延長線交BA的延長線于點(diǎn)F,連接FD.
(1)求證:AB=AF;
(2)若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】南方旱情嚴(yán)重,乙水庫需每天向外供相同量的水. 3天后,為緩解旱情,北方甲水庫立即以管道運(yùn)輸?shù)姆绞浇o乙水庫送水,在給乙水庫送水前甲水庫的蓄水量一直為5000萬m3.由于兩水庫相距較遠(yuǎn),甲水庫的送出的水要5天后才能到達(dá)乙水庫,12天后旱情緩解,乙水庫不再向外供水,甲水庫也停止向乙水庫送水.下圖是甲水庫的蓄水量與乙水庫蓄水量之差y(萬m3)與時(shí)間x(天)之間的函數(shù)圖象.則甲水庫每天的送水量為__________萬m3.(假設(shè)在單位時(shí)間內(nèi),甲水庫的放水量與乙水庫的進(jìn)水量相同,水在排放、接收以及輸送過程中的損耗不計(jì)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l1:y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),已知A點(diǎn)的縱坐標(biāo)是2:
(1)求反比例函數(shù)的表達(dá)式;
(2)將直線l1:y=﹣x向上平移后的直線l2與反比例函數(shù)y=在第二象限內(nèi)交于點(diǎn)C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O及⊙O外一點(diǎn)P,過點(diǎn)P作出⊙O的一條切線(只有圓規(guī)和三角板這兩種工具),以下是甲、乙兩同學(xué)的作業(yè):
甲:①連接OP,作OP的垂直平分線l,交OP于點(diǎn)A;
②以點(diǎn)A為圓心、OA為半徑畫弧、交⊙O于點(diǎn)M;
③作直線PM,則直線PM即為所求(如圖1).
乙:①讓直角三角板的一條直角邊始終經(jīng)過點(diǎn)P;
②調(diào)整直角三角板的位置,讓它的另一條直角邊過圓心O,直角頂點(diǎn)落在⊙O上,記這時(shí)直角頂點(diǎn)的位置為點(diǎn)M;
③作直線PM,則直線PM即為所求(如圖2).
對于兩人的作業(yè),下列說法正確的是( )
A. 甲乙都對B. 甲乙都不對
C. 甲對,乙不對D. 甲不對,已對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上學(xué)習(xí)了圓周角的概念和性質(zhì):“頂點(diǎn)在圓上,兩邊與圓相交”,“同弧所對的圓周角相等”,小明在課后繼續(xù)對圓外角和圓內(nèi)角進(jìn)行了探究.
下面是他的探究過程,請補(bǔ)充完整:
定義概念:頂點(diǎn)在圓外,兩邊與圓相交的角叫做圓外角,頂點(diǎn)在圓內(nèi),兩邊與圓相交的角叫做圓內(nèi)角.如圖1,∠M為所對的一個(gè)圓外角.
(1)請?jiān)趫D2中畫出所對的一個(gè)圓內(nèi)角;
提出猜想
(2)通過多次畫圖、測量,獲得了兩個(gè)猜想:一條弧所對的圓外角______這條弧所對的圓周角;一條弧所對的圓內(nèi)角______這條弧所對的圓周角;(填“大于”、“等于”或“小于”)
推理證明:
(3)利用圖1或圖2,在以上兩個(gè)猜想中任選一個(gè)進(jìn)行證明;
問題解決
經(jīng)過證明后,上述兩個(gè)猜想都是正確的,繼續(xù)探究發(fā)現(xiàn),還可以解決下面的問題.
(4)如圖3,F,H是∠CDE的邊DC上兩點(diǎn),在邊DE上找一點(diǎn)P使得∠FPH最大.請簡述如何確定點(diǎn)P的位置.(寫出思路即可,不要求寫出作法和畫圖)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某縣教育局為了豐富初中學(xué)生的大課間活動(dòng),要求各學(xué)校開展形式多樣的陽光體育活動(dòng).某中學(xué)就“學(xué)生體育活動(dòng)興趣愛好”的問題,隨機(jī)調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖:
(1)在這次調(diào)查中,喜歡籃球項(xiàng)目的同學(xué)有 人,在扇形統(tǒng)計(jì)圖中,“乒乓球”的百分比為 %,如果學(xué)校有800名學(xué)生,估計(jì)全校學(xué)生中有 人喜歡籃球項(xiàng)目.
(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué).現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表班級參加;@球隊(duì),請直接寫出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知銳角∠MBN的余弦值為,點(diǎn)C在射線BN上,BC=25,點(diǎn)A在∠MBN的內(nèi)部,且∠BAC=90°,∠BCA=∠MBN.過點(diǎn)A的直線DE分別交射線BM、射線BN于點(diǎn)D、E.點(diǎn)F在線段BE上(點(diǎn)F不與點(diǎn)B重合),且∠EAF=∠MBN.
(1)如圖1,當(dāng)AF⊥BN時(shí),求EF的長;
(2)如圖2,當(dāng)點(diǎn)E在線段BC上時(shí),設(shè)BF=x,BD=y,求y關(guān)于x的函數(shù)解析式并寫出函數(shù)定義域;
(3)聯(lián)結(jié)DF,當(dāng)△ADF與△ACE相似時(shí),請直接寫出BD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com