【題目】如圖,AC是⊙O的直徑,點D是⊙O 上一點,⊙O的切線CB與AD的延長線交于點B,點F是直徑AC上一點,連接DF并延長交⊙O于點E,連接AE.
(1)求證:∠ABC=∠AED;
(2)連接BF,若AD=,AF=6,tan∠AED=,求BF的長.
【答案】(1)證明見解析;(2)2.
【解析】
(1)直接利用圓周角定理以及切線的性質定理得出∠ACD=∠ABC,進而得出答案;
(2)首先得出DC的長,即可得出FC的長,再利用已知得出BC的長,結合勾股定理求出答案.
(1)證明:連接DC,
∵AC是⊙O的直徑,
∴∠BDC=90°,
∴∠ABC+∠BCD=90°,
∵⊙O的切線CB與AD的延長線交于點B,
∴∠BCA=90°,
∴∠ACD+∠BCD=90°,
∴∠ACD=∠ABC,
∴∠ABC=∠AED;
(2)解:連接BF,
∵在Rt△ADC中,AD=,tan∠AED=,
∴tan∠ACD==,
∴DC=AD=,
∴AC==8,
∵AF=6,
∴CF=AC﹣AF=8﹣6=2,
∵∠ABC=∠AED,
∴tan∠ABC==,
∴ =,
解得:BD=,
故BC=6,
則BF==2.
科目:初中數學 來源: 題型:
【題目】已知點在軸正半軸上,以為邊作等邊,,其中是方程的解.
(1)求點的坐標.
(2)如圖1,點在軸正半軸上,以為邊在第一象限內作等邊,連并延長交軸于點,求的度數.
(3)如圖2,若點為軸正半軸上一動點,點在點的右邊,連,以為邊在第一象限內作等邊,連并延長交軸于點,當點運動時,的值是否發(fā)生變化?若不變,求其值;若變化,求出其變化的范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某部隊將在指定山區(qū)進行軍事演習,為了使道路便于部隊重型車輛通過,部隊工兵連接到搶修一段長3600米道路的任務,按原計劃完成總任務的后,為了讓道路盡快投入使用,工兵連將工作效率提高了50%,一共用了10小時完成任務.
(1)按原計劃完成總任務的時,已搶修道路 米;
(2)求原計劃每小時搶修道路多少米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將函數的圖象沿y軸向上平移得到新函數圖象,其中原函數圖象上的兩點A(1,m)、B(4,n)平移后對應新函數圖象上的點分別為點A′、B′.若陰影部分的面積為6,則新函數的表達式為( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】學校開展“書香校園”活動以來,受到同學們的廣泛關注,學位為了解全校學生課外閱讀的情況,隨機調查了部分學生在一周內借閱圖書的次數,并制成如下不完整的統計圖表.
請你根據統計圖表中的信息,解答下列問題:
(1)=___________,=_____________;
(2)該調查統計數據的中位數是_________,眾數是__________;
(3)請計算扇形統計圖中“3次”所對應扇形的圓心角的度數;
(4)若該校共有2000名學生,根據調查結果,估計該校學生在一周內借閱圖書“4次及以上”的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如果拋物線C1的頂點在拋物線C2上,同時,拋物線C2的頂點在拋物線C1上,那么,我們稱拋物線C1與拋物線C2互相依存.
(1)已知拋物線①:y=﹣2x2+4x+3與拋物線②:y=2x2+4x﹣1,請判斷拋物線①與拋物線②是否互相依存,并說明理由.
(2)將拋物線C1:y=﹣2x2+4x+3沿x軸翻折,再向右平移m(m>0)個單位,得到拋物線C2,若拋物線C1與C2互相依存,求m的值.
(3)試問:如果對稱軸不同的兩條拋物線(二次函數圖象)互相依存,那么它們的函數表達式中的二次項系數之間有什么數量關系?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小美周末去公園玩,發(fā)現公園一角有一種“守株待兔”的游戲,該游戲老板說明游戲規(guī)則如下:提供一只兔子和一個有A、B、C、D、E五個出口的兔籠,而且籠內的兔子從每個出口走出兔籠的機會是均等的,玩家只能將兔子從A、B兩個出入口放兔子,如果兔子進籠子后從開始進入的入口出來,則玩家可獲得價值5元的小兔玩具一只,否則,應付3元的參與費用.
(1)用作表或樹狀圖列出小美參與游戲的所有可能結果,并求出小美得到玩具兔子的概率.
(2)假設有100人玩這個游戲,估計老板約賺多少錢.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com