精英家教網 > 初中數學 > 題目詳情

【題目】如圖,AC是⊙O的直徑,點D是⊙O 上一點,⊙O的切線CBAD的延長線交于點B,點F是直徑AC上一點,連接DF并延長交⊙O于點E,連接AE.

(1)求證:∠ABC=AED;

(2)連接BF,若AD=,AF=6,tanAED=,求BF的長.

【答案】(1)證明見解析;(2)2.

【解析】

(1)直接利用圓周角定理以及切線的性質定理得出∠ACD=ABC,進而得出答案;

(2)首先得出DC的長,即可得出FC的長,再利用已知得出BC的長,結合勾股定理求出答案.

(1)證明:連接DC,

AC是⊙O的直徑,

∴∠BDC=90°,

∴∠ABC+BCD=90°,

∵⊙O的切線CBAD的延長線交于點B,

∴∠BCA=90°,

∴∠ACD+BCD=90°,

∴∠ACD=ABC,

∴∠ABC=AED;

(2)解:連接BF,

∵在RtADC中,AD=,tanAED=,

tanACD==,

DC=AD=,

AC==8,

AF=6,

CF=AC﹣AF=8﹣6=2,

∵∠ABC=AED,

tanABC==,

=,

解得:BD=,

BC=6,

BF==2

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知點軸正半軸上,以為邊作等邊,其中是方程的解.

1)求點的坐標.

2)如圖1,點軸正半軸上,以為邊在第一象限內作等邊,連并延長交軸于點,求的度數.

3)如圖2,若點軸正半軸上一動點,點在點的右邊,連,以為邊在第一象限內作等邊,連并延長交軸于點,當點運動時,的值是否發(fā)生變化?若不變,求其值;若變化,求出其變化的范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)(x+1)2-3=0; (2)2x2-3=5x;

(3)3x2-6x+2=0 ; (4)9(x-2)2-4x2=0.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某部隊將在指定山區(qū)進行軍事演習,為了使道路便于部隊重型車輛通過,部隊工兵連接到搶修一段長3600米道路的任務,按原計劃完成總任務的后,為了讓道路盡快投入使用,工兵連將工作效率提高了50%,一共用了10小時完成任務.

1按原計劃完成總任務的時,已搶修道路   米;

2求原計劃每小時搶修道路多少米?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將函數的圖象沿y軸向上平移得到新函數圖象,其中原函數圖象上的兩點A(1,m)、B(4,n)平移后對應新函數圖象上的點分別為點A′、B′.若陰影部分的面積為6,則新函數的表達式為( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知△ABN△ACM位置如圖所示,AB=ACAD=AE,∠1=∠2

1)求證:BD=CE

2)求證:∠M=∠N

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】學校開展“書香校園”活動以來,受到同學們的廣泛關注,學位為了解全校學生課外閱讀的情況,隨機調查了部分學生在一周內借閱圖書的次數,并制成如下不完整的統計圖表.

請你根據統計圖表中的信息,解答下列問題:

1=___________,=_____________;

2)該調查統計數據的中位數是_________,眾數是__________;

3)請計算扇形統計圖中“3次”所對應扇形的圓心角的度數;

4)若該校共有2000名學生,根據調查結果,估計該校學生在一周內借閱圖書“4次及以上”的人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如果拋物線C1的頂點在拋物線C2上,同時,拋物線C2的頂點在拋物線C1上,那么,我們稱拋物線C1與拋物線C2互相依存.

(1)已知拋物線①:y=﹣2x2+4x+3與拋物線②:y=2x2+4x﹣1,請判斷拋物線與拋物線是否互相依存,并說明理由.

(2)將拋物線C1:y=﹣2x2+4x+3沿x軸翻折,再向右平移m(m0)個單位,得到拋物線C2,若拋物線C1與C2互相依存,求m的值.

(3)試問:如果對稱軸不同的兩條拋物線(二次函數圖象)互相依存,那么它們的函數表達式中的二次項系數之間有什么數量關系?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小美周末去公園玩,發(fā)現公園一角有一種守株待兔的游戲,該游戲老板說明游戲規(guī)則如下:提供一只兔子和一個有A、B、C、D、E五個出口的兔籠,而且籠內的兔子從每個出口走出兔籠的機會是均等的,玩家只能將兔子從A、B兩個出入口放兔子,如果兔子進籠子后從開始進入的入口出來,則玩家可獲得價值5元的小兔玩具一只,否則,應付3元的參與費用.

(1)用作表或樹狀圖列出小美參與游戲的所有可能結果,并求出小美得到玩具兔子的概率.

(2)假設有100人玩這個游戲,估計老板約賺多少錢.

查看答案和解析>>

同步練習冊答案