【題目】在⊙O中,AB為直徑,點C為圓上一點,將劣弧沿弦AC翻折交AB于點D,連結(jié)CD.如圖,若點D與圓心O不重合,∠BAC25°,則∠DCA的度數(shù)( 。

A.35°B.40°C.45°D.65°

【答案】B

【解析】

首先連接BC,由AB是直徑,可求得∠ACB=90°,則可求得∠B的度數(shù),然后由翻折的性質(zhì)可得,弧AC所對的圓周角為∠B,弧ABC所對的圓周角為∠ADC,繼而求得答案.

連接BC,

AB是直徑,

∴∠ACB=90°,

∵∠BAC=25°

∴∠B=90°BAC=90°25°=65°

根據(jù)翻折的性質(zhì),AC所對的圓周角為∠B,ABC所對的圓周角為∠ADC,

∴∠ADC+B=180°,

∴∠B=CDB=65°,

∴∠DCA=CDBA=65°25°=40°.

故選B.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知⊙O的半徑長為1AB、AC是⊙O的兩條弦,且ABACBO的延長線交AC于點D,連接OA、OC

1)求證:OAD∽△ABD;

2)當OCD是直角三角形時,求B、C兩點的距離;

3)記AOB、AOD、COD的面積分別為S1、S2、S3,如果S22S1S3,試證明點D為線段AC的黃金分割點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,,點在邊上運動(不與點,重合),以為邊作正方形,使點在正方形內(nèi),連接,則下列結(jié)論:①;②當時,;③點到直線的距離為;④面積的最大值是.其中正確的結(jié)論是______.(填寫所有正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列關(guān)于函數(shù)的四個命題:

①當x=0時,y有最小值12

n為任意實數(shù),x=3+n時的函數(shù)值大于x=3-n時的函數(shù)值;

③若n3,且n是整數(shù),當時,y的整數(shù)值有個;

④若函數(shù)圖象過點,其中a0,b0,則ab

其中真命題的序號是(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】凈揚水凈化有限公司用160萬元,作為新產(chǎn)品的研發(fā)費用,成功研制出了一種市場急需的小型水凈化產(chǎn)品,已于當年投入生產(chǎn)并進行銷售.已知生產(chǎn)這種小型水凈化產(chǎn)品的成本為4/件,在銷售過程中發(fā)現(xiàn):每年的年銷售量(萬件)與銷售價格x(元/件)的關(guān)系如圖所示,其中AB為反比例函數(shù)圖象的一部分,BC為一次函數(shù)圖象的一部分.設公司銷售這種水凈化產(chǎn)品的年利潤為z(萬元).(注:若上一年盈利,則盈利不計入下一年的年利潤;若上一年虧損,則虧損計作下一年的成本.)

1)請求出y(萬件)與x(元/件)之間的函數(shù)關(guān)系式;

2)求出第一年這種水凈化產(chǎn)品的年利潤z(萬元)與x(元/件)之間的函數(shù)關(guān)系式,并求出第一年年利潤的最大值;

3)假設公司的這種水凈化產(chǎn)品第一年恰好按年利潤z(萬元)取得最大值時進行銷售,現(xiàn)根據(jù)第一年的盈虧情況,決定第二年將這種水凈化產(chǎn)品每件的銷售價格x(元)定在8元以上(),當?shù)诙甑哪昀麧櫜坏陀?/span>103萬元時,請結(jié)合年利潤z(萬元)與銷售價格x(元/件)的函數(shù)示意圖,求銷售價格x(元/件)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有四張背面完全相同的紙牌,其正面分別畫有四個不同的幾何圖形,這四張紙牌背面朝上洗勻.

1)從中隨機摸出一張,求摸出的牌正面圖形是中心對稱圖形的概率;

2)小明和小亮約定做一個游戲,其規(guī)則如下:先由小明隨機摸出一張紙牌,不放回,再由小亮從剩下的紙牌中隨機摸出一張,若摸出的兩張牌正面圖形都是軸對稱圖形,則小明獲勝,否則小亮獲勝,這個游戲公平嗎?請用列表或畫樹狀圖的方法說明. (紙牌用表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在△ABC中,按以下步驟作圖:①以點B為圓心,任意長為半徑作弧,分別交BA、BC于點MN;再以點N為圓心,MN長為半徑作弧交前面的弧于點F,作射線BFAC的延長線于點E

②以點B為圓心,BA長為半徑作弧交BE于點D,連接CD

請你觀察圖形,解答下列問題:

1)求證:△ABC≌△DBC;

2)若∠A=100°,∠E=50°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,,于點,于點

1)求證:

2)當時,證明四邊形是菱形;

3)若的外心在其內(nèi)部,,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形ABCD中,AB6,對角線ACBD相交于點OEAB所在直線上一點(不與點B重合),將線段OE繞點E順時針旋轉(zhuǎn)90°得到EF

1)如圖1,當點E和點A重合時,連接BF,直接寫出BF的長為   

2)如圖2,點E在線段AB上,且AE1,連接BF,求BF的長;

3)若DGAG21,連接CF,HCF的中點,是否存在點E使GEH是以EG為直角邊的直角三角形?若存在,請直接寫出EB的長;若不存在,試說明理由.

查看答案和解析>>

同步練習冊答案