【題目】在平面直角坐標系中,直線(且)與軸交于點,過點作直線軸,且與交于點.
(1)當,時,求的長;
(2)若,,且軸,判斷四邊形的形狀,并說明理由.
【答案】(1)BC=1;(2)四邊形OBDA是平行四邊形,見解析.
【解析】
(1)理由待定系數(shù)法求出點D坐標即可解決問題;
(2)四邊形OBDA是平行四邊形.想辦法證明BD=OA=3即可解決問題.
解:(1)當m=-2,n=1時,直線的解析式為y=-2x+1,
當x=1時,y=-1,
∴B(1,-1),
∴BC=1.
(2)結(jié)論:四邊形OBDA是平行四邊形.
理由:如圖,∵BD∥x軸,B(1,1-m),D(4,3+m),
∴1-m=3+m,
∴m=-1,
∵B(1,m+n),
∴m+n=1-m,
∴n=3,
∴直線y=-x+3,
∴A(3,0),
∴OA=3,BD=3,
∴OA=BD,OA∥BD,
∴四邊形OBDA是平行四邊形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人分別從相距100km的A、B兩地同時出發(fā)相向而行,并以各自的速度勻速行駛.甲出發(fā)2h后到達B地立即按原路返回,返回時速度提高了30km/h,回到A地后在A地休息等乙,乙在出發(fā)5h后到達A地.(友情提醒:可以借助用線段圖分析題目)
(1)乙的速度是_______,甲從A地到B地的速度是_______,甲在出發(fā)_______小時到達A地.
(2)出發(fā)多長時間兩人首次相遇?
(3)出發(fā)多長時間時,兩人相距30千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊長為2,點E,F分別是邊AD,CD上的兩個動點,且滿足AE+CF=BD=2,設(shè)△BEF的面積為S,則S的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校七年級男生的身高(單位:)情況,隨機抽取了七年級部分學(xué)生進行了抽樣調(diào)查.統(tǒng)計數(shù)據(jù)如下表:
組別 | |||||
身高 | |||||
人數(shù) |
(1)樣本容量是多少?組距是多少?組數(shù)是多少?
(2)畫出適當?shù)慕y(tǒng)計圖表示上面的信息;
(3)若全校七年級學(xué)生有人,請估計身高不低于的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,對角線AC與BD相交于點O,AC平分∠DAB,且∠DAC=∠DBC,那么下列結(jié)論不一定正確的是( 。
A. △AOD∽△BOC B. △AOB∽△DOC C. CD=BC D. BCCD=ACOA
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx(a≠0)經(jīng)過點A(2,0),點B(3,3),BC⊥x軸于點C,連接OB,等腰直角三角形DEF的斜邊EF在x軸上,點E的坐標為(﹣4,0),點F與原點重合
(1)求拋物線的解析式并直接寫出它的對稱軸;
(2)△DEF以每秒1個單位長度的速度沿x軸正方向移動,運動時間為t秒,當點D落在BC邊上時停止運動,設(shè)△DEF與△OBC的重疊部分的面積為S,求出S關(guān)于t的函數(shù)關(guān)系式;
(3)點P是拋物線對稱軸上一點,當△ABP是直角三角形時,請直接寫出所有符合條件的點P坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩站相距480千米,一輛快車從甲站出發(fā),每小時行駛120千米,一輛慢車從乙站出發(fā),每小時行駛80千米.
(1)兩車同時開出,相向而行,多少小時后兩車相遇?
(2)兩車同時開出,相向而行,多少小時后兩車相距100千米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com