【題目】如圖,半圓O的半徑OA=4,P是OA延長(zhǎng)線上一點(diǎn),線段OP的垂直平分線分別交OP、半圓O于B、C兩點(diǎn),射線PC交半圓O于點(diǎn)D.設(shè)PA=x,CD=y(tǒng),則能表示y與x的函數(shù)關(guān)系的圖象是( )

A.
B.
C.
D.

【答案】A
【解析】解:設(shè)AO與半圓O的另一個(gè)交點(diǎn)為點(diǎn)E,
如圖1,由題意可知,線段OP的垂直平分線交半圓O于點(diǎn)C,且PC與半圓O相切時(shí),點(diǎn)C與點(diǎn)D重合,

圖1
此時(shí),∵PC與半圓O相切,PCOC,且BC是OP的垂直平分線,
∴△ PCO是等腰直角三角形,∴PO=,
∴PA=-4,
分 0<x<-4 和 -4<x<4 以下兩種情況:
①當(dāng)0<x<-4時(shí),如圖2:

圖2
∵OA=4,PA=x,CD=y(tǒng),
∴根據(jù)切割線定理的推論及垂直平分線性質(zhì)(PC=OC)得:PAPE=PDPC,即x(x+8)=(4-y)4,解得:y=x2-2x+4(0<x<-4).
②當(dāng)-4<x<4時(shí),如圖3:

圖3
∵OA=4,PA=x,CD=y(tǒng),
∴根據(jù)切割線定理的推論及垂直平分線性質(zhì)(PC=OC)得:PAPE=PCPD,即x(x+8)=4(4+y),解得:y=x2+2x-4(-4<x<4).
③當(dāng)x4時(shí),顯然不成立.
綜上,可知對(duì)應(yīng)函數(shù)圖像應(yīng)為選項(xiàng)A.
【考點(diǎn)精析】本題主要考查了二次函數(shù)的圖象的相關(guān)知識(shí)點(diǎn),需要掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開(kāi)口方向2、對(duì)稱(chēng)軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△OAB的頂點(diǎn)A(﹣4,8)在拋物線y=ax2上,將Rt△OAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到△OCD,邊CD與該拋物線交于點(diǎn)P,則點(diǎn)P的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=4,點(diǎn)E是BC邊上一點(diǎn),連接AE,把∠B沿AE折疊,使點(diǎn)B落在點(diǎn)B′處.當(dāng)△CEB′為直角三角形時(shí),BE的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一輛客車(chē)從甲地出發(fā)前往乙地,平均速度v(千米/小時(shí))與所用時(shí)間t(小時(shí))的函數(shù)關(guān)系如圖所示,其中60≤v≤120.
(1)直接寫(xiě)出v與t的函數(shù)關(guān)系式;
(2)若一輛貨車(chē)同時(shí)從乙地出發(fā)前往甲地,客車(chē)比貨車(chē)平均每小時(shí)多行駛20千米,3小時(shí)后兩車(chē)相遇.
①求兩車(chē)的平均速度;
②甲、乙兩地間有兩個(gè)加油站A、B,它們相距200千米,當(dāng)客車(chē)進(jìn)入B加油站時(shí),貨車(chē)恰好進(jìn)入A加油站(兩車(chē)加油的時(shí)間忽略不計(jì)),求甲地與B加油站的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一次測(cè)量活動(dòng)中,小麗站在離樹(shù)底部E處5m的B處仰望樹(shù)頂C,仰角為30°,已知小麗的眼睛離地面的距離AB為1.65m,那么這棵樹(shù)大約有多高?(結(jié)果精確到0.1m,參考數(shù)據(jù): ≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在 中,以 為直徑的⊙O,交 于點(diǎn) ,且 ,交線段 的延長(zhǎng)線于點(diǎn) ,連接 ,過(guò)點(diǎn) 于點(diǎn)

(Ⅰ)求證: ;
(Ⅱ)在 的內(nèi)部作 ,使 , 分別交于 、 于點(diǎn) 、 ,交⊙O于點(diǎn) ,若 ,求 的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形ABCD沿EF折疊,使點(diǎn)B,D重合,已知AB=3,AD=4,則 ①DE=DF;②DF=EF;③△DCF≌△DGE;④EF=
上面結(jié)論正確的有(

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把正方形鐵片OABC置于平面直角坐標(biāo)系中,頂點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)P(1,2)在正方形鐵片上,將正方形鐵片繞其右下角的頂點(diǎn)按順時(shí)針?lè)较蛞来涡D(zhuǎn)90°,第一次旋轉(zhuǎn)至圖①位置,第二次旋轉(zhuǎn)至圖②位置…,則正方形鐵片連續(xù)旋轉(zhuǎn)2017次后,點(diǎn)P的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙三位運(yùn)動(dòng)員在相同條件下各射靶10次,每次射靶的成績(jī)?nèi)缦拢?/span>
甲:9,10,8,5,7,8,10,8,8,7
乙:5,7,8,7,8,9,7,9,10,10
丙:7,6,8,5,4,7,6,3,9,5
(1)根據(jù)以上數(shù)據(jù)完成下表:

平均數(shù)

中位數(shù)

方差

8

8

8

8

2.2

6

3


(2)根據(jù)表中數(shù)據(jù)分析,哪位運(yùn)動(dòng)員的成績(jī)最穩(wěn)定,并簡(jiǎn)要說(shuō)明理由;
(3)比賽時(shí)三人依次出場(chǎng),順序由抽簽方式?jīng)Q定,求甲、乙相鄰出場(chǎng)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案