拋物線交軸于、兩點,交軸于點,已知拋物線的對稱軸為,,,
(1
)求二次函數的解析式;(2) 在拋物線對稱軸上是否存在一點,使點到、兩點距離之差最大?若存在,求出點坐標;若不存在,請說明理由;
(3)平行于軸的一條直線交拋物線于兩點,若以為直徑的圓恰好與軸相切,求此圓的半徑.
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源:2011年河南省周口市黃集二中九年級上學期聯(lián)考數學卷 題型:解答題
拋物線交軸于、兩點,交軸于點,頂點為.
【小題1】(1)寫出拋物線的對稱軸及、兩點的坐標(用含的代數式表示)
【小題2】(2)連接并以為直徑作⊙,當時,請判斷⊙是否經過點,并說明理由;
【小題3】(3)在(2)題的條件下,點是拋物線上任意一點,過作直線垂直于對稱軸,垂足為. 那么是否存在這樣的點,使△與以、、為頂點的三角形相似?若存在,請求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源:2005年初中畢業(yè)升學考試(山東濰坊卷)數學(帶解析) 題型:解答題
拋物線交軸于、兩點,交軸于點,已知拋物線的對稱軸為,,,
(1)求二次函數的解析式;
在拋物線對稱軸上是否存在一點,使點到、兩點距離之差最大?若存在,求出點坐標;若不存在,請說明理由;
平行于軸的一條直線交拋物線于兩點,若以為直徑的圓恰好與軸相切,求此圓的半徑.
查看答案和解析>>
科目:初中數學 來源:2005年初中畢業(yè)升學考試(山東濰坊卷)數學(解析版) 題型:解答題
拋物線交軸于、兩點,交軸于點,已知拋物線的對稱軸為,
,,
(1)求二次函數的解析式;
(2) 在拋物線對稱軸上是否存在一點,使點到、兩點距離之差最大?若存在,求出點坐標;若不存在,請說明理由;
(3) 平行于軸的一條直線交拋物線于兩點,若以為直徑的圓恰好與軸相切,求此圓的半徑.
查看答案和解析>>
科目:初中數學 來源:2011年河南省周口市九年級上學期聯(lián)考數學卷 題型:解答題
拋物線交軸于、兩點,交軸于點,頂點為.
1.(1)寫出拋物線的對稱軸及、兩點的坐標(用含的代數式表示)
2.(2)連接并以為直徑作⊙,當時,請判斷⊙是否經過點,并說明理由;
3.(3)在(2)題的條件下,點是拋物線上任意一點,過作直線垂直于對稱軸,垂足為. 那么是否存在這樣的點,使△與以、、為頂點的三角形相似?若存在,請求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com