【題目】已知多項(xiàng)式與多項(xiàng)式的和中不含有項(xiàng)

1__________.

2)計(jì)算:的值,并通過計(jì)算的結(jié)果,猜想的關(guān)系.

3)請(qǐng)你利用猜想計(jì)算:

【答案】13,-2;(2)見解析;(310000

【解析】

1)先根據(jù)題意,求出兩個(gè)多項(xiàng)式的和,由于和中不含項(xiàng),也就是說x的系數(shù)等于0,y的系數(shù)等于0,從而求得a、b的值;

2)把a、b的值代入分別求出的值,從而猜想出的關(guān)系.

3)利用(2)可得出

解:(1)(2x2+ay-12+bx2-3y+6=2+bx2+a-3y-6,

∵和不含有x、y項(xiàng).

2+b=0,a-3=0,
b=-2a=3;

故答案為:3,-2

2)當(dāng)b=-2a=3時(shí),;

∴猜想:

3)利用(2)可得:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,ABAC,AD平分∠BACBC于點(diǎn)DBE平分∠ABCAD于點(diǎn)E, F是邊AB上一點(diǎn),以BF為直徑的⊙O經(jīng)過點(diǎn)E

(1)求證:AD是⊙O的切線;

(2)若BC=4,cosC ,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為加強(qiáng)學(xué)生的安全意識(shí),組織了全市學(xué)生參加安全知識(shí)競(jìng)賽,為了解此次知識(shí)競(jìng)賽成績(jī)的情況,隨機(jī)抽取了部分參賽學(xué)生的成績(jī),整理并制作出如下的不完整的統(tǒng)計(jì)表和統(tǒng)計(jì)圖,如圖所示,請(qǐng)根據(jù)圖表信息解答以下問題.

組別

成績(jī)x/

頻數(shù)

A

a

B

8

C

12

D

14

(1)一共抽取了_____個(gè)參賽學(xué)生的成績(jī);表中____;

(2)補(bǔ)全頻數(shù)分布直方圖;

(3)計(jì)算扇形統(tǒng)計(jì)圖中“C”對(duì)應(yīng)的圓心角度數(shù);

(4)某校共有2000人,安全意識(shí)不強(qiáng)的學(xué)生(指成績(jī)?cè)?/span>70分以下)估計(jì)有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】12分探索規(guī)律觀察下面由組成的圖案和算式,解答問題

1請(qǐng)計(jì)算1+3+5+7+9+11=__________;

2請(qǐng)猜想1+3+5+7+9++19=__________

3請(qǐng)猜想1+3+5+7+9++2n1=__________;

4請(qǐng)用上述規(guī)律計(jì)算:21+23+25++99

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC中,∠ACB=90°,AC=2,BC=4.點(diǎn)D是線段BC上的一個(gè)動(dòng)點(diǎn).點(diǎn)D與點(diǎn)B、C不重合,過點(diǎn)D作DE⊥BC交AB于點(diǎn)E,將△ABC沿著直線DE翻折,使點(diǎn)B落在直線BC上的F點(diǎn).

(1)設(shè)∠BAC=α(如圖①),求∠AEF的大;(用含α的代數(shù)式表示)

(2)當(dāng)點(diǎn)F與點(diǎn)C重合時(shí)(如圖②),求線段DE的長(zhǎng)度;

(3)設(shè)BD=x,△EDF與△ABC重疊部分的面積為S,試求出S與x之間函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C,D是⊙O上點(diǎn),且OCBD,AD分別與BC,OC相交于點(diǎn)E,F(xiàn),則下列結(jié)論:①ADBD;CB平分∠ABD;③∠AOC=AEC;AF=DF;BD=2OF.其中正確的結(jié)論有( )

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l與⊙O相離,OAl于點(diǎn)A,交⊙O于點(diǎn)B,點(diǎn)C是⊙O上一點(diǎn),連接CB并延長(zhǎng)交直線l于點(diǎn)D,使AC=AD.

(1)求證:AC是⊙O的切線;

(2)若BD=2,OA=4,求線段BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張華在一次數(shù)學(xué)活動(dòng)中,利用在面積一定的矩形中,正方形的周長(zhǎng)最短的結(jié)論,推導(dǎo)出式子x0)的最小值是2”.其推導(dǎo)方法如下:在面積是1的矩形中設(shè)矩形的一邊長(zhǎng)為x,則另一邊長(zhǎng)是,矩形的周長(zhǎng)是2);當(dāng)矩形成為正方形時(shí),就有x=x0),解得x=1,這時(shí)矩形的周長(zhǎng)2=4最小,因此x0)的最小值是2.模仿張華的推導(dǎo),你求得式子x0)的最小值是( )

A. 2 B. 1 C. 6 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點(diǎn)F,交BC的延長(zhǎng)線于點(diǎn)E.

(1)求證:BE=CD;

(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案