精英家教網 > 初中數學 > 題目詳情
(2012•湖州)如圖1,已知菱形ABCD的邊長為2
3
,點A在x軸負半軸上,點B在坐標原點.點D的坐標為(-
3
,3),拋物線y=ax2+b(a≠0)經過AB、CD兩邊的中點.
(1)求這條拋物線的函數解析式;
(2)將菱形ABCD以每秒1個單位長度的速度沿x軸正方向勻速平移(如圖2),過點B作BE⊥CD于點E,交拋物線于點F,連接DF、AF.設菱形ABCD平移的時間為t秒(0<t<
3

①是否存在這樣的t,使△ADF與△DEF相似?若存在,求出t的值;若不存在,請說明理由;
②連接FC,以點F為旋轉中心,將△FEC按順時針方向旋轉180°,得△FE′C′,當△FE′C′落在x軸與拋物線在x軸上方的部分圍成的圖形中(包括邊界)時,求t的取值范圍.(寫出答案即可)
分析:(1)根據已知條件求出AB和CD的中點坐標,然后利用待定系數法求該二次函數的解析式;
(2)本問是難點所在,需要認真全面地分析解答:
①如圖2所示,△ADF與△DEF相似,包括三種情況,需要分類討論:
(I)若∠ADF=90°時,△ADF∽△DEF,求此時t的值;
(II)若∠DFA=90°時,△DEF∽△FBA,利用相似三角形的對應邊成比例可以求得相應的t的值;
(III)∠DAF≠90°,此時t不存在;
②如圖3所示,畫出旋轉后的圖形,認真分析滿足題意要求時,需要具備什么樣的限制條件,然后根據限制條件列出不等式,求出t的取值范圍.確定限制條件是解題的關鍵.
解答:解:(1)由題意得AB的中點坐標為(-
3
,0),CD的中點坐標為(0,3),
分別代入y=ax2+b得
(-
3
)
2
a+b=0
b=3
,
解得,
a=-1
b=3
,
∴y=-x2+3.                                      

(2)①如圖2所示,在Rt△BCE中,∠BEC=90°,BE=3,BC=2
3

∴sinC=
BE
BC
=
3
2
3
=
3
2
,∴∠C=60°,∠CBE=30°
∴EC=
1
2
BC=
3
,DE=
3
                                
又∵AD∥BC,∴∠ADC+∠C=180°
∴∠ADC=180°-60°=120°
要使△ADF與△DEF相似,則△ADF中必有一個角為直角.
(I)若∠ADF=90°
∠EDF=120°-90°=30°
在Rt△DEF中,DE=
3
,求得EF=1,DF=2.
又∵E(t,3),F(t,-t2+3),∴EF=3-(-t2+3)=t2
∴t2=1,∵t>0,∴t=1                                    
此時
AD
DE
=
2
3
3
=2,
DF
EF
=
2
1
=2
,
AD
DE
=
DF
EF
,
又∵∠ADF=∠DEF
∴△ADF∽△DEF                                  
(II)若∠DFA=90°,
可證得△DEF∽△FBA,則
DE
FB
EF
BA

設EF=m,則FB=3-m
3
3-m
m
2
3
,即m2-3m+6=0,此方程無實數根.
∴此時t不存在;                                        
(III)由題意得,∠DAF<∠DAB=60°
∴∠DAF≠90°,此時t不存在.                              
綜上所述,存在t=1,使△ADF與△DEF相似;
②如圖3所示,依題意作出旋轉后的三角形△FE′C′,過C′作MN⊥x軸,分別交拋物線、x軸于點M、點N.
觀察圖形可知,欲使△FE′C′落在指定區(qū)域內,必須滿足:EE′≤BE且MN≥C′N.
∵F(t,3-t2),∴EF=3-(3-t2)=t2,∴EE′=2EF=2t2
由EE′≤BE,得2t2≤3,解得t≤
6
2

∵C′E′=CE=
3
,∴C′點的橫坐標為t-
3

∴MN=3-(t-
3
2,又C′N=BE′=BE-EE′=3-2t2,
由MN≥C′N,得3-(t-
3
2≥3-2t2,解得t≥
6
-
3
或t≤-
6
-3(舍).
∴t的取值范圍為:
6
-
3
≤t≤
6
2
點評:本題是動線型中考壓軸題,綜合考查了二次函數的圖象與性質、待定系數法、幾何變換(平移與旋轉)、菱形的性質、相似三角形的判定與性質等重要知識點,難度較大,對考生能力要求很高.本題難點在于第(2)問,(2)①中,需要結合△ADF與△DEF相似的三種情況,分別進行討論,避免漏解;(2)②中,確定“限制條件”是解題關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2012•湖州)如圖,△ABC是⊙O的內接三角形,AC是⊙O的直徑,∠C=50°,∠ABC的平分線BD交⊙O于點D,則∠BAD的度數是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•湖州)如圖,已知點A(4,0),O為坐標原點,P是線段OA上任意一點(不含端點O,A),過P、O兩點的二次函數y1和過P、A兩點的二次函數y2的圖象開口均向下,它們的頂點分別為B、C,射線OB與AC相交于點D.當OD=AD=3時,這兩個二次函數的最大值之和等于(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•湖州)如圖是七年級(1)班參加課外興趣小組人數的扇形統計圖,則表示唱歌興趣小組人數的扇形的圓心角度數是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•湖州)如圖,已知反比例函數y=
kx
(k≠0)的圖象經過點(-2,8).
(1)求這個反比例函數的解析式;
(2)若(2,y1),(4,y2)是這個反比例函數圖象上的兩個點,請比較y1、y2的大小,并說明理由.

查看答案和解析>>

同步練習冊答案