如圖,一次函數的圖象分別與軸、軸交于點A、B,以線段AB為邊在第一象限內作等腰Rt△ABC,∠BAC=90°.求過B、C兩點直線的解析式.
解:一次函數中,令得:;令,解得。
∴A的坐標是(0,2),C的坐標是(3,0).
作CD⊥軸于點D。
∵∠BAC=90°,∴∠OAB+∠CAD=90°。
又∵∠CAD+∠ACD=90°,∴∠ACD=∠BAO。
又∵AB=AC,∠BOA=∠CDA=90°,∴△ABO≌△CAD(AAS)。
∴AD=OB=2,CD=OA=3,OD=OA+AD=5!郈的坐標是(5,3)。
設BC的解析式是,
根據題意得:,解得:。
∴BC的解析式是:。
【解析】一次函數綜合題,全等三角形的判定和性質,待定系數法,直線上點的坐標與方程的關系。
【分析】作CD⊥x軸于點D,易證△ABO≌△CAD,即可求得AD,CD的長,則C的坐標即可求解;利用待定系數法即可求得直線BC的解析式。
科目:初中數學 來源: 題型:
12 | x |
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖,一次函數的圖象與反比例函數y1= – ( x<0)的圖象相交于A點,與y軸、x軸分別相交于B、C兩點,且C(2,0).當x<–1時,一次函數值大于反比例函數的值,當x>–1時,一次函數值小于反比例函數值.
(1) 求一次函數的解析式;
(2) 設函數y2= (x>0)的圖象與y1= – (x<0)的圖象關于y軸對稱.在y2= (x>0)的圖象上取一點P(P點的橫坐標大于2),過P作PQ⊥x軸,垂足是Q,若四邊形BCQP的面積等于2,求P點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖,一次函數的圖象與反比例函數(x<0)的圖象相交于A點,與y軸、x軸分別相交于B、C兩點,且C(2,0),當x<-1時,一次函數值大于反比例函數值,當x>-1時,一次函數值小于反比例函數值.
(1)求一次函數的解析式;
(2)設函數(x>0)的圖象與(x<0)的圖象關于y軸對稱,在(x>0)的圖象上取一點P(P點的橫坐標大于2),過P點作PQ⊥x軸,垂足是Q,若四邊形BCQP的面積等于2,求P點的坐標.
解答:
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖,一次函數的圖象與反比例函數y1= – ( x<0)的圖象相交于A點,與y軸、x軸分別相交于B、C兩點,且C(2,0).當x<–1時,一次函數值大于反比例函數的值,當x>–1時,一次函數值小于反比例函數值.
(1) 求一次函數的解析式;
(2) 設函數y2= (x>0)的圖象與y1= – (x<0)的圖象關于y軸對稱.在y2= (x>0)的圖象上取一點P(P點的橫坐標大于2),過P作PQ⊥x軸,垂足是Q,若四邊形BCQP的面積等于2,求P點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖,一次函數的圖象與反比例函數y1= – ( x<0)的圖象相交于A點,與y軸、x軸分別相交于B、C兩點,且C(2,0).當x<–1時,一次函數值大于反比例函數的值,當x>–1時,一次函數值小于反比例函數值.
(1) 求一次函數的解析式;
(2) 設函數y2= (x>0)的圖象與y1= – (x<0)的圖象關于y軸對稱.在y2= (x>0)的圖象上取一點P(P點的橫坐標大于2),過P作PQ⊥x軸,垂足是Q,若四邊形BCQP的面積等于2,求P點的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com