【題目】如圖,的直徑,、上的點(diǎn),為圓外一點(diǎn),、均與圓相切,設(shè),則滿足的關(guān)系式為(

A.B.C.D.以上都不對

【答案】B

【解析】

連結(jié)OC,OD,則∠PCO=90°,∠PDO=90°,可得∠CPD+COD=180°,根據(jù)OB=OC,OD=OA,可得∠BOC=180°-2B,∠AOD=180°-2A,則可得出αβ的關(guān)系式.

連結(jié)OC,OD,

PCPD均與圓相切,

∴∠PCO=90°,∠PDO=90°

∵∠PCO+COD+ODP+CPD=360°,

∴∠CPD+COD=180°,

OB=OC,OD=OA,

∴∠BOC=180°-2B,∠AOD=180°-2A

∴∠COD+BOC+AOD=180°,

180°-CPD+180°-2B+180°-2A=180°

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的對角線AC、BD相交于點(diǎn)O,AE平分∠BAD,分別交BC、BD于點(diǎn)E、P,連接OE,ADC=60°,AB=BC=1,則下列結(jié)論:

①∠CAD=30°BD=S平行四邊形ABCD=ABACOE=ADSAPO=,正確的個數(shù)是( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,M是AB的中點(diǎn),動點(diǎn)P從點(diǎn)A出發(fā),

沿AC方向勻速運(yùn)動到終點(diǎn)C,動點(diǎn)Q從點(diǎn)C出發(fā),沿CB方向勻速運(yùn)動到終點(diǎn)B.已知P,Q兩點(diǎn)同時出發(fā),并同時到達(dá)終點(diǎn).連結(jié)MP,MQ,PQ.在整個運(yùn)動過程中,△MPQ的面積大小變化情況是【 】

A.一直增大 B.一直減小 C.先減小后增大 D.先增大后減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小亮一家在一湖泊中游玩,湖泊中有一孤島,媽媽在孤島P處觀看小亮與爸爸在湖中劃船(如圖所示).小船從P處出發(fā),沿北偏東60°方向劃行200米到A處,接著向正南方向劃行一段時間到B處.在B處小亮觀測到媽媽所在的P處在北偏西37°的方向上,這時小亮與媽媽相距多少米(精確到1米)?

(參考數(shù)據(jù):sin37°≈0.60cos37°≈0.80,tan37°≈0.75,≈1.41≈1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校園安全受到全社會的廣泛關(guān)注,東營市某中學(xué)對部分學(xué)生就校園安全知識的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:

1接受問卷調(diào)查的學(xué)生共有_______人,扇形統(tǒng)計圖中基本了解部分所對應(yīng)扇形的圓心角為_______°

2請補(bǔ)全條形統(tǒng)計圖;

3若該中學(xué)共有學(xué)生900人,請根據(jù)上述調(diào)查結(jié)果,估計該中學(xué)學(xué)生中對校園安全知識達(dá)到了解基本了解程度的總?cè)藬?shù);

4若從對校園安全知識達(dá)到了解程度的3個女生和2個男生中隨機(jī)抽取2人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,⊙A的半徑為1,圓心A點(diǎn)的坐標(biāo)為(21).直線OM是一次函數(shù)y=x的圖象.將直線OM沿x軸正方向平行移動.

1)填空:直線OMx軸所夾的銳角度數(shù)為 °;

2)求出運(yùn)動過程中⊙A與直線OM相切時的直線OM的函數(shù)關(guān)系式;(可直接用(1)中的結(jié)論)

3)運(yùn)動過程中,當(dāng)⊙A與直線OM相交所得的弦對的圓心角為90°時,直線OM的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,等邊ABC的邊長為3,分別以頂點(diǎn)BA、C為圓心,BA長為半徑作、,我們把這三條弧所組成的圖形稱作萊洛三角形,顯然萊洛三角形仍然是軸對稱圖形,設(shè)點(diǎn)l為對稱軸的交點(diǎn).

(1)如圖2,將這個圖形的頂點(diǎn)A與線段MN作無滑動的滾動,當(dāng)它滾動一周后點(diǎn)A與端點(diǎn)N重合,則線段MN的長為 ;

(2)如圖3,將這個圖形的頂點(diǎn)A與等邊DEF的頂點(diǎn)D重合,且ABDE,DE=2π,將它沿等邊DEF的邊作無滑動的滾動當(dāng)它第一次回到起始位置時,求這個圖形在運(yùn)動過程中所掃過的區(qū)域的面積;

(3)如圖4,將這個圖形的頂點(diǎn)BO的圓心O重合,O的半徑為3,將它沿O的圓周作無滑動的滾動,當(dāng)它第n次回到起始位置時,點(diǎn)I所經(jīng)過的路徑長為 (請用含n的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某排球隊6名場上隊員的身高(單位:cm)是:180,182184,186,190,194.現(xiàn)用一名身高為188cm的隊員換下場上身高為182cm的隊員,與換人前相比,場上隊員的身高

A.平均數(shù)變小,方差變小B.平均數(shù)變小,方差變大

C.平均數(shù)變大,方差變小D.平均數(shù)變大,方差變大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,BDACD,CEABE

1)求證:△ABD∽△ACE

2)連接DE,求證:∠ADE=∠ABC

查看答案和解析>>

同步練習(xí)冊答案