已知拋物線拋物線(n為正整數(shù),且0<a1<a2<…<an)與x軸的交點為An-1(bn-1,0)和An(bn,0),當(dāng)n=1時,第1條拋物線與x軸的交點為A0(0,0)和A1(b1,0),其他依此類推.
(1)求a1,b1的值及拋物線y2的解析式;
(2)拋物線y3的頂點坐標(biāo)為(       ,       );
依此類推第n條拋物線yn的頂點坐標(biāo)為(       ,       );
所有拋物線的頂點坐標(biāo)滿足的函數(shù)關(guān)系是       ;
(3)探究下列結(jié)論:
①若用An-1An表示第n條拋物線被x軸截得得線段長,直接寫出A0A1的值,并求出An-1An
②是否存在經(jīng)過點A(2,0)的直線和所有拋物線都相交,且被每一條拋物線截得得線段的長度都相等?若存在,直接寫出直線的表達(dá)式;若不存在,請說明理由.

解:(1)∵與x軸交于點A0(0,0),∴―a12+ a1=0,∴a1=0或1。
由已知可知a1>0,∴a1=1。
。
令y1=0代入得:=0,∴x1=0,x2=2。
∴y1與x軸交于A0(0,0),A1(2,0)!郻1=2。
又∵拋物線與x軸交于點A1(2,0),
∴―(2―a2)2+ a2=0,∴a2=1或4,∵a2> a1,∴a2=1(舍去)。
∴取a2=4,拋物線。
(2)(9,9);(n2,n2);y=x。
(3)①∵A0(0,0),A1(2,0),∴A0 A1=2。
又∵,
令yn=0,得,解得:x1=n2+n,x2=n2-n。
∴A n1(n2-n,0),A n(n2+n,0),即A n1 A n="(" n2+n)-( n2-n)="2" n。
②存在。是平行于直線y=x且過A1(2,0)的直線,其表達(dá)式為y=x-2。

解析試題分析:(1)將A0坐標(biāo)代入y1的解析式可求得a1的值;a1的值知道了y1的解析式也就確定了,已知拋物線就可求出b1的值,又把(b1,0)代入y2,可求出a2,即得y2的解析式。
(2)用同樣的方法可求得a3、a4、a5 ……由此得到規(guī)律
∵拋物線令y2=0代入得:,∴x1=2,x2=6。
∴y2與x軸交于點A1(2,0),A2(6,0)。
又∵拋物線與x軸交于A2(6,0),∴―(6―a3)2+a3=0!郺3=4或9。
∵a3> a3,∴a3=4(舍去),即a3=9。∴拋物線y3的頂點坐標(biāo)為(9,9)。

由拋物線y1的頂點坐標(biāo)為(1,1),y2的頂點坐標(biāo)為(4,4),y3的頂點坐標(biāo)為(9,9),依次類推拋物線yn的頂點坐標(biāo)為(n2,n2)。
∵所有拋物線的頂點的橫坐標(biāo)等于縱坐標(biāo),
∴頂點坐標(biāo)滿足的函數(shù)關(guān)系式是:y= x。
(3)①由(2)可知A0A1=2,A1A2=4,A2A3=6,得A n1 A n="2" n。
②猜測這是與直線y=x平行且過A(2,0)的一條直線,即y=x-2。
可用特殊值法驗證:取,得所截得的線段長度為,換一組拋物線試試,求出的值也為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

將拋物線向左平移個單位長度,使之過點,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

先閱讀以下材料,然后解答問題:
材料:將二次函數(shù)的圖象向左平移1個單位,再向下平移2個單位,求平移后的拋物線的解析式(平移后拋物線的形狀不變)。
解:在拋物線上任取兩點A(0,3)、B(1,4),由題意知:點A向左平移1個單位得到,3),再向下平移2個單位得到,1);點B向左平移1個單位得到(0,4),再向下平移2個單位得到(0,2)。
設(shè)平移后的拋物線的解析式為。
則點,1),(0,2)在拋物線上。
可得:,解得:。
所以平移后的拋物線的解析式為:。
根據(jù)以上信息解答下列問題:
將直線向右平移3個單位,再向上平移1個單位,求平移后的直線的解析式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1,已知拋物線y=ax2+bx(a≠0)經(jīng)過A(3,0)、B(4,4)兩點.

(1)求拋物線的解析式;
(2)將直線OB向下平移m個單位長度后,得到的直線與拋物線只有一個公共點D,求m的值及點D的坐標(biāo);
(3)如圖2,若點N在拋物線上,且∠NBO=∠ABO,則在(2)的條件下,求出所有滿足△POD∽△NOB的點P坐標(biāo)(點P、O、D分別與點N、O、B對應(yīng)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線經(jīng)過A(﹣1,0),B(5,0),C(0,)三點.

(1)求拋物線的解析式;
(2)在拋物線的對稱軸上有一點P,使PA+PC的值最小,求點P的坐標(biāo);
(3)點M為x軸上一動點,在拋物線上是否存在一點N,使以A,C,M,N四點構(gòu)成的四邊形為平行四邊形?若存在,求點N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,正方形AOCB在平面直角坐標(biāo)系中,點O為原點,點B在反比例函數(shù))圖象上,△BOC的面積為

(1)求反比例函數(shù)的關(guān)系式;
(2)若動點E從A開始沿AB向B以每秒1個單位的速度運動,同時動點F 從B開始沿BC向C以每秒個單位的速度運動,當(dāng)其中一個動點到達(dá)端點時,另一個動點隨之停止運動.若運動時間用t表示,△BEF的面積用表示,求出S關(guān)于t的函數(shù)關(guān)系式,并求出當(dāng)運動時間t取何值時,△BEF的面積最大?
(3)當(dāng)運動時間為秒時,在坐標(biāo)軸上是否存在點P,使△PEF的周長最?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,二次函數(shù)的圖象與x軸交于點A(﹣3,0)和點B,以AB為邊在x軸上方作正方形ABCD,點P是x軸上一動點,連接DP,過點P作DP的垂線與y軸交于點E.

(1)請直接寫出點D的坐標(biāo):     ;
(2)當(dāng)點P在線段AO(點P不與A、O重合)上運動至何處時,線段OE的長有最大值,求出這個最大值;
(3)是否存在這樣的點P,使△PED是等腰三角形?若存在,請求出點P的坐標(biāo)及此時△PED與正方形ABCD重疊部分的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中有一矩形ABCO(O為原點),點A、C分別在x軸、y軸上,且C點坐標(biāo)為(0,6),將△BCD沿BD折疊(D點在OC邊上),使C點落在DA邊的E點上,并將△BAE沿BE折疊,恰好使點A落在BD邊的F點上.

(1)求BC的長,并求折痕BD所在直線的函數(shù)解析式;
(2)過點F作FG⊥x軸,垂足為G,F(xiàn)G的中點為H,若拋物線經(jīng)過B,H, D三點,求拋物線解析式;
(3)點P是矩形內(nèi)部的點,且點P在(2)中的拋物線上運動(不含B, D點),過點P作PN⊥BC,分別交BC 和 BD于點N, M,是否存在這樣的點P,使如果存在,求出點P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線y=ax2+c(a≠0)經(jīng)過C(2,0),D(0,﹣1)兩點,并與直線y=kx交于A、B兩點,直線l過點E(0,﹣2)且平行于x軸,過A、B兩點分別作直線l的垂線,垂足分別為點M、N.

(1)求此拋物線的解析式;
(2)求證:AO=AM;
(3)探究:
①當(dāng)k=0時,直線y=kx與x軸重合,求出此時的值;
②試說明無論k取何值,的值都等于同一個常數(shù).

查看答案和解析>>

同步練習(xí)冊答案