經(jīng)過(guò)平面上任意三點(diǎn)中的兩點(diǎn)畫(huà)直線,可畫(huà)直線的條數(shù)是


  1. A.
    1條
  2. B.
    2條
  3. C.
    3條
  4. D.
    1條或3條
D
三點(diǎn)共線時(shí),能畫(huà)一條。三點(diǎn)不共線時(shí),能畫(huà)三條。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(0,2),以O(shè)A為直徑作圓B.若點(diǎn)D是x軸上的一動(dòng)點(diǎn),連接AD交圓B于點(diǎn)C.
(1)當(dāng)tan∠DAO=
12
時(shí),求直線BC的解析式;
(2)過(guò)點(diǎn)D作DP∥y軸與過(guò)B、C兩點(diǎn)的直線交于點(diǎn)P,請(qǐng)任意求出三個(gè)符合條件的點(diǎn)P的坐標(biāo),并確定圖象經(jīng)過(guò)這三個(gè)點(diǎn)的二次函數(shù)的解析式;
(3)若點(diǎn)P滿足(2)中的條件,點(diǎn)M的坐標(biāo)為(-3,3),求線段PM與PB的和的最小值,并求出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

精英家教網(wǎng)九年義務(wù)教育三年制初級(jí)中學(xué)教科書(shū)代數(shù)第三冊(cè)中,有以下幾段文字:“對(duì)于坐標(biāo)平面內(nèi)任意一點(diǎn)M,都有唯一的一對(duì)有序?qū)崝?shù)(x,y)和它對(duì)應(yīng);對(duì)于任意一對(duì)有序?qū)崝?shù)(x,y),在坐標(biāo)平面內(nèi)都有唯一的一點(diǎn)M和它對(duì)應(yīng),也就是說(shuō),坐標(biāo)平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對(duì)是一一對(duì)應(yīng)的.”“一般地,對(duì)于一個(gè)函數(shù),如果把自變量x與函數(shù)y的每對(duì)對(duì)應(yīng)值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn),這些點(diǎn)所組成的圖形,就是這個(gè)函數(shù)的圖象.”“實(shí)際上,所有一次函數(shù)的圖象都是一條直線.”“因?yàn)閮牲c(diǎn)確定一條直線,所以畫(huà)一次函數(shù)的圖象時(shí),只要先描出兩點(diǎn),再連成直線,就可以了.”由此可知:滿足函數(shù)關(guān)系式的有序?qū)崝?shù)對(duì)所對(duì)應(yīng)的點(diǎn),一定在這個(gè)函數(shù)的圖象上;反之,函數(shù)圖象上的點(diǎn)的坐標(biāo),一定滿足這個(gè)函數(shù)的關(guān)系式.另外,已知直線上兩點(diǎn)的坐標(biāo),便可求出這條直線所對(duì)應(yīng)的一次函數(shù)的解析式.
問(wèn)題1:已知點(diǎn)A(m,1)在直線y=2x-1上,求m的方法是:
 
,∴m=
 
;已知點(diǎn)B(-2,n)在直線y=2x-1上,求n的方法是:
 
,∴n=
 
;
問(wèn)題2:已知某個(gè)一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)P(3,5)和Q(-4,-9),求這個(gè)一次函數(shù)的解析式時(shí),一般先
 
,再由已知條件可得
 
.解得:
 
.∴滿足已知條件的一次函數(shù)的解析式為:
 
.這個(gè)一次函數(shù)的圖象與兩坐標(biāo)軸的交點(diǎn)坐標(biāo)為:
 
,在右側(cè)給定的平面直角坐標(biāo)系中,描出這兩個(gè)點(diǎn),并畫(huà)出這個(gè)函數(shù)的圖象.像解決問(wèn)題2這樣,
 
的方法,叫做待定系數(shù)法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,平面直角坐標(biāo)系中,在第一象限的矩形ABCO的邊OA在y正半軸上,OC在x正半軸上,點(diǎn)D是線段OC上一點(diǎn),過(guò)點(diǎn)D作DE⊥AD交直線BC于點(diǎn)E,以A、D、E為頂點(diǎn)作矩形ADEF.
(1)求證:△AOD∽△DCE;
(2)若點(diǎn)A坐標(biāo)為(O,4),點(diǎn)C坐標(biāo)為(7,0).
①當(dāng)點(diǎn)D的坐標(biāo)為(5,0)時(shí),若拋物線經(jīng)過(guò)A、F、B三點(diǎn),求該拋物線的解析式;
②當(dāng)點(diǎn)D(k,0)是線段OC(不包括端點(diǎn))上任意一點(diǎn),則點(diǎn)F仍在①中所求的拋物線上嗎?請(qǐng)說(shuō)明理由;
③當(dāng)點(diǎn)A的坐標(biāo)是(0,m),點(diǎn)C的坐標(biāo)是(n,0),當(dāng)點(diǎn)D在線段OC上運(yùn)動(dòng)時(shí),是否了存在一條拋物線,使得點(diǎn)F始終落在該拋物線上?若存在,請(qǐng)直接寫(xiě)出該拋物線的解析式(用含m、n表示);若不存在,請(qǐng)說(shuō)明理由.
(3)在第(2)題②的條件下,若點(diǎn)D(k,0)是在x軸上,且不在線段OC上的任意一點(diǎn),其他條件不變,則點(diǎn)F是否還在①中所求的拋物線上?如果在,請(qǐng)以點(diǎn)D(k,0)在x負(fù)半軸上為例畫(huà)出示意圖(畫(huà)在備用圖上),并說(shuō)明理由;如果不在,請(qǐng)舉反例說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:三維目標(biāo)導(dǎo)學(xué)與測(cè)評(píng)·數(shù)學(xué)(北師大版)七年級(jí)上冊(cè) 題型:013

經(jīng)過(guò)平面上任意三點(diǎn)中的兩點(diǎn)畫(huà)直線,可畫(huà)直線的條數(shù)是

[  ]

A.1條
B.2條
C.3條
D.1條或3條

查看答案和解析>>

同步練習(xí)冊(cè)答案