如圖,在半徑為5 cm的⊙O中,圓心O到弦AB的距離為3 cm,則弦AB的長是(    )

A.4 cm             B.6 cm             C.8 cm             D.10 cm

 

【答案】

C

【解析】

試題分析:連結OA。

易知在Rt△AOC中。OA=r=5cm,OC=3cm,所以根據(jù)勾三股四弦五可知AC=4cm。所以AB=2AC=8cm。

考點:圓與弦

點評:本題難度較低,主要考查學生對圓的知識點的學習。

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,在半徑為6,圓心角為90°的扇形OAB的弧AB上,有一個動點P,PH⊥OA,垂足為H,△OPH的重精英家教網(wǎng)心為G.
(1)當點P在AB上運動時,線段GO、GP、GH中,有無長度保持不變的線段?如果有,請指出這樣的線段,并求出相應的長度;
(2)設PH=x,GP=y,求y關于x的函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△PGH是等腰三角形,試求出線段PH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在半徑為1的⊙O中,AB為直徑,C為弧AB的中點,D為弧CB的三等分點,且弧DB的長等于弧CD長的兩倍,連接AD并延長交⊙O的切線CE于點E(C為切點),則AE的長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在半徑為5的⊙O中,若弦AB=8,則△AOB的面積為( 。
A、24B、16C、12D、8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在半徑為6,圓心角為90°的扇形OAB的
AB
上,有一個動點P,PH⊥OA,垂足為H,△OPH的重心為G.精英家教網(wǎng)
(1)設PH=x,S△PGH=y,求y關于x的函數(shù)解析式;
(2)△PGH的面積是否有最大值?如果有,求出最大面積,并求出此時PH的長度;如果沒有,請說明理由;
(3)如果△PGH為等腰三角形,試求出線段PH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在半徑為2的⊙O中,圓心0到弦AB的距離為1,C為AB上方圓弧上任意一點,則∠ACB=
60°
60°

查看答案和解析>>

同步練習冊答案