28、已知關于x的方程x2-2(m+1)x+m2-2m-3=0…①的兩個不相等實數(shù)根中有一個根為0.是否存在實數(shù)k,使關于x的方程x2-(k-m)x-k-m2+5m-2=0…②的兩個實數(shù)根x1,x2之差的絕對值為1?若存在,求出k的值;若不存在,請說明理由.
分析:本題先要從第一個方程的判別式及有一個根為0出發(fā),確定實數(shù)m的值,然后將m的值代入第二個方程并將其化簡,再利用根與系數(shù)的關系根據(jù)題意看看能否找出k的值.
解答:解:把x=0代入得m2-2m-3=0.
解得m=3或-1.
∵方程有兩個不相等實數(shù)根.
∴[-2(m+1)]2-4×(m2-2m-3)>0.
解得m>-1.
∴m=3.
∵x1,x2之差的絕對值為1.
∴(x1-x22=1.
∴(x1+x22-4x1x2=1.
(k-3)2-4(-k+4)=1.
解得k1=-2,k2=4.
∵當k=-2時,△=[-(k-3)]2-4(-k+4)
=k2-2k-7
=(-2)2-2×(-2)-7
=1>0
當k=4時,△=k2-2k-7=42-2×4-7=1>0.
∴存在實數(shù)k=-2或4,使得方程②的兩個實數(shù)根之差的絕對值為1.
點評:本題是一個探索存在性問題,利用判別式和根與系數(shù)的關系,按照題意直接推理是解這類問題的基本方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

8、已知關于x的方程x2+kx+1=0和x2-x-k=0有一個根相同,則k的值為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•綿陽)已知關于x的方程x2-(m+2)x+(2m-1)=0.
(1)求證:方程恒有兩個不相等的實數(shù)根;
(2)若此方程的一個根是1,請求出方程的另一個根,并求以此兩根為邊長的直角三角形的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2007•西城區(qū)二模)已知關于x的方程x2+3x=8-m有兩個不相等的實數(shù)根.
(1)求m的最大整數(shù)是多少?
(2)將(1)中求出的m值,代入方程x2+3x=8-m中解出x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關于x的方程x2-2(k+1)x+k2=0有兩個實數(shù)根,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關于x的方程x2-(3k+1)x+2k2+2k=0
(1)求證:無論k取何實數(shù)值,方程總有實數(shù)根.
(2)若等腰△ABC的一邊長為a=6,另兩邊長b,c恰好是這個方程的兩個根,求此三角形的周長.

查看答案和解析>>

同步練習冊答案