【題目】如圖表示一個(gè)正比例函數(shù)與一個(gè)一次函數(shù)的圖象,它們交于點(diǎn)A(4,3),一次函數(shù)的圖象與y軸交于點(diǎn)B,且OA=OB.
(1)求這兩個(gè)函數(shù)的解析式;
(2)求△OAB的面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O在直線AB上,OD是∠AOC的平分線,OE是∠BOC的平分線.
(1)圖中與∠AOD互余的角是 ,與∠COE互補(bǔ)的角是 ;(把符合條件的角都寫出來)
(2)求∠DOE的度數(shù);
(3)如果∠BOF=51°34',∠COE=38°43',請畫出射線OF,求∠COF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABE和△ADC是△ABC分別沿著AB、AC邊翻折180°形成的,若∠1:∠2:∠3=28:5:3,則∠α的度數(shù)為__度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在四邊形ABCD中,∠ABC=∠ADC=90,M、N分別是CD和BC上的點(diǎn).
求作:點(diǎn)M、N,使△AMN的周長最小.
作法:如圖,
(1)延長AD,在AD的延長線上截取DA=DA;
(2)延長AB,在AB的延長線上截取B A″=BA;
(3)連接A′A″,分別交CD、BC于點(diǎn)M、N.則點(diǎn)M、N即為所求作的點(diǎn).
請回答:這種作法的依據(jù)是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】C點(diǎn)的坐標(biāo)為(4,4),A為y軸負(fù)半軸上一動(dòng)點(diǎn),連CA,CB⊥CA交x軸于B.
(1)求OB﹣OA的值;
(2)E在x軸正半軸上,D在y軸負(fù)半軸上,∠DCE=45°,轉(zhuǎn)動(dòng)∠DCE,求線段BE、DE和AD之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,點(diǎn)是邊的中點(diǎn),點(diǎn)是邊上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作射線的垂線,垂足為點(diǎn),連接.設(shè),.
小石根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)隨自變量的變化而變化的規(guī)律進(jìn)行了探究.
下面是小石的探究過程,請補(bǔ)充完整:
(1)通過取點(diǎn)、畫圖、測量,得到了與的幾組值,如下表:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
3.0 | 2.4 | 1.9 | 1.8 | 2.1 | 3.4 | 4.2 | 5.0 |
(說明:補(bǔ)全表格時(shí)相關(guān)數(shù)據(jù)保留一位小數(shù))
(2)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:
點(diǎn)是邊的中點(diǎn)時(shí),的長度約為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,□ABCD中,E為BC邊上一點(diǎn),且AE交DC延長線于F,連接BF,下列關(guān)于面積的結(jié)論中錯(cuò)誤的是( )
A.S△ABF =S△ADEB.S△ABF =S△ADF
C.S△ABF=S□ABCDD.S△ADE=S□ABCD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某物流公司的快遞車和貨車每天沿同一條路線往返于A、B兩地,快遞車比貨車多往返一趟.如圖所示,表示貨車距離A地的路程y(單位:h)與所用時(shí)間x(單位h)的圖像,其間在B地裝卸貨物2h.已知快遞車比貨車早1h出發(fā),最后一次返回A地比貨車晚1h.若快遞車往返途中速度不變,且在A、B兩地均不停留,則兩車在往返途中相遇的次數(shù)為________次.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在正方形ABCD中,點(diǎn)E與點(diǎn)F分別在線段AC、BC上,且四邊形DEFG是正方形.
(1)試探究線段AE與CG的關(guān)系,并說明理由.
(2)如圖②若將條件中的四邊形ABCD與四邊形DEFG由正方形改為矩形,AB=3,BC=4.
①線段AE、CG在(1)中的關(guān)系仍然成立嗎?若成立,請證明,若不成立,請寫出你認(rèn)為正確的關(guān)系,并說明理由.
②當(dāng)△CDE為等腰三角形時(shí),求CG的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com