【題目】體育課上,體育老師對七年級一個班的學(xué)生進行了立定跳遠項目的測試,得到一組測試分數(shù)的數(shù)據(jù),并將測試所得分數(shù)繪制如圖所示的統(tǒng)計圖,圖中從左到右的學(xué)生數(shù)人數(shù)之比為2 : 3 : 4 : 1,且成績?yōu)?分的學(xué)生有12人,根據(jù)以上信息解答下列問題:
(1) 這個班級有多少名學(xué)生?
(2)這組數(shù)據(jù)的眾數(shù)是 分,中位數(shù)是 分.
(3)這個班級學(xué)生立定跳遠項目測試的平均成績是多少?
【答案】(1)40人,(2)9;8.5;(3)8.4分.
【解析】
(1)根據(jù)得7分、8分、9分和10分的人數(shù)之比為2 : 3 : 4 : 1,且得8分的人數(shù)為12,即可求得該班的總?cè)藬?shù);
(2)根據(jù)(1)中所求得的總?cè)藬?shù)即可求出得分分別為7分、9分和10分的人數(shù),結(jié)合中位數(shù)和眾數(shù)的定義即可確定出這組數(shù)據(jù)的中位數(shù)和眾數(shù);
(3)根據(jù)得分為7分、8分、9分和10分的人數(shù)即可求出該班這次立定跳遠成績的平均得分.
(1)∵立定跳遠測試成績得7分、8分、9分和10分的人數(shù)之比為2 : 3 : 4 : 1,且得分為8分的有12人,
∴ 該班的總?cè)藬?shù)為:12÷3×(2+3+4+1)=40(人);
(2)∵該班的總?cè)藬?shù)為40人,立定跳遠測試成績得7分、8分、9分和10分的人數(shù)之比為2 : 3 : 4 : 1,
∴得分為7分的人數(shù)=;
得分為9分的人數(shù)=;
得分為10分的人數(shù)=;
∵得分為8分的有12人,
∴該班立定跳遠成績的眾數(shù)是9分,
∵將成績按從小到大排列后,第20個和21個成績分別為8分和9分,
∴該班立定跳遠成績的中位數(shù)是8.5分;
(3)由(2)可得,該班立定跳遠成績的平均分為:
(分).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平整的地面上,有若干個完全相同的棱長為10cm的小正方體堆成一個幾何體,如圖所示.
(1)這個幾何體由 個小正方體組成,請畫出這個幾何體的三視圖;
(2)如果在這個幾何體的表面噴上黃色的漆,則在所有的小正方體中,有 個正方體只有一個面是黃色,有 個正方體只有兩個面是黃色,有 個正方體只有三個面是黃色;
(3)若現(xiàn)在你手頭還有一些相同的小正方體,如果保持俯視圖和左視圖不變,最多可以再添加幾個小正方體.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)平面內(nèi),二次函數(shù)圖象的頂點為A(1,﹣4),且過點B(3,0).
(1)求該二次函數(shù)的解析式;
(2)將該二次函數(shù)圖象向右平移幾個單位,可使平移后所得圖象經(jīng)過坐標(biāo)原點?并直接寫出平移后所得圖象與x軸的另一個交點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC= .對角線AC,BD相交于點O,將直線AC繞點O順時針旋轉(zhuǎn),分別交BC,AD于點E,F(xiàn).
(1)證明:當(dāng)旋轉(zhuǎn)角為90°時,四邊形ABEF是平行四邊形;
(2)試說明在旋轉(zhuǎn)過程中,線段AF與EC總保持相等;
(3)在旋轉(zhuǎn)過程中,四邊形BEDF可能是菱形嗎?如果不能,請說明理由;如果能,說明理由并求出此時AC繞點O順時針旋轉(zhuǎn)的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次期中考試中A、B、C、D、E五位同學(xué)的數(shù)學(xué)、英語成績等有關(guān)信息如下表所示:
A | B | C | D | E | 平均分 | 標(biāo)準(zhǔn)差 | |
數(shù)學(xué) | 71 | 72 | 69 | 68 | 70 | ||
英語 | 88 | 82 | 94 | 85 | 76 | 85 |
【1】求這五位同學(xué)在本次考試中數(shù)學(xué)成績的平均分和英語成績的標(biāo)準(zhǔn)差;
【2】為了比較不同學(xué)科考試成績的好與差,采用標(biāo)準(zhǔn)分是一個合理的選擇,標(biāo)準(zhǔn)分的計算公式是標(biāo)準(zhǔn)分=(個人成績-平均成績)÷成績標(biāo)準(zhǔn)差. 從標(biāo)準(zhǔn)分看,標(biāo)準(zhǔn)分大的考試成績更好,請問A同學(xué)在本次考試中,數(shù)學(xué)與英語哪個學(xué)科考得更好.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,AB:BC:CA=3:4:5,且周長為36cm,點P從點A開始沿AB邊向點B以每秒1cm的速度移動;點Q從點B沿BC邊向點C以每秒2cm的速度移動;如果同時出發(fā),則過3秒時,求△BPQ的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點P(m,n)在第一象限,且在直線y=-x+6上,點A的坐標(biāo)為(5,0),O是坐標(biāo)原點,△PAO的面積是S.
(1)求S與m的函數(shù)關(guān)系式,并畫出函數(shù)S的圖象;
(2)小杰認為△PAO的面積可以為15,你認為呢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣4(a≠0)與x軸交于A(4,0),B(﹣1,0)兩點,過點A的直線y=﹣x+4交拋物線于點C.
(1)求此拋物線的解析式;
(2)在直線AC上有一動點E,當(dāng)點E在某個位置時,使△BDE的周長最小,求此時E點坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com