如圖,菱形紙片ABCD中,∠A=60°,折疊菱形紙片ABCD,使點(diǎn)C落在DP(P為AB中點(diǎn))所在的直線上,得到經(jīng)過點(diǎn)D的折痕DE.則∠DEC的大小為
A.78°B.75°C.60°D.45°
B

試題分析:連接BD,

∵四邊形ABCD為菱形,∠A=60°,
∴△ABD為等邊三角形,∠ADC=120°,∠C=60°。
∵P為AB的中點(diǎn),∴DP為∠ADB的平分線,即∠ADP=∠BDP=30°。
∴∠PDC=90°。
∴由折疊的性質(zhì)得到∠CDE=∠PDE=45°。
在△DEC中,。故選B。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形ABCD的邊長是3,點(diǎn)P是直線BC上一點(diǎn),連接PA,將線段PA繞點(diǎn)P逆時針旋轉(zhuǎn)90°得到線段PE,在直線BA上取點(diǎn)F,使BF=BP,且點(diǎn)F與點(diǎn)E在BC同側(cè),連接EF,CF.

(1)如圖①,當(dāng)點(diǎn)P在CB延長線上時,求證:四邊形PCFE是平行四邊形;
(2)如圖②,當(dāng)點(diǎn)P在線段BC上時,四邊形PCFE是否還是平行四邊形,說明理由;
(3)在(2)的條件下,四邊形PCFE的面積是否有最大值?若有,請求出面積的最大值及此時BP長;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,有八個全等的直角三角形拼成一個大四邊形ABCD和中間一個小四邊形MNPQ,連接EF、GH得到四邊形EFGH,設(shè)S四邊形ABCD=S1,S四邊形EFGH=S2,S四邊形MNPQ=S3,若S1+S2+S3=20,則S2=          .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,將一張長為70cm的矩形紙片ABCD沿對稱軸EF折疊后得到如圖所示的形狀,若折疊后AB與CD的距離為60cm,則重疊部分四邊形較長邊的長度為(    )
A.20 cmB.15 cmC.10 cmD.cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

梯形的中位線為8cm,高為3 cm,則此梯形的面積為___________ cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

小明借助沒有刻度的直尺,按照下圖的順序作出了∠O的平分線OP,他這樣做的數(shù)學(xué)原理是                                             

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知ABCD。

(1)作圖:延長BC,并在BC的延長線上截取線段CE,使得CE=BC(用尺規(guī)作圖法,保留作圖痕跡,不要求寫
作法);
(2))在(1)的條件下,連結(jié)AE,交CD于點(diǎn)F,求證:△AFD≌△EFC。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,在梯形ABCD中,AD∥BC,對角線AC⊥BD,且AC=12,BD=5,則這個梯形中位線的長等于   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在梯形ABCD中,AD∥BC,AB=CD=AD=5,∠B=60°,則BC=     

查看答案和解析>>

同步練習(xí)冊答案