如圖,在梯形ABCD中,AD∥BC,對(duì)角線AC,BD相交于點(diǎn)E.若AE=4,CE=8,DE=3,梯形ABCD的高是,面積是54.求證:AC⊥BD.
證明見解析.
解析試題分析:由AD∥BC,可證明△EAD∽△ECB,利用相似三角形的性質(zhì)即可求出BE的長(zhǎng),過D作DF∥AC交BC延長(zhǎng)線于F,則四邊形ACFD是平行四邊形,所以CF=AD,再根據(jù)勾股定理的逆定理證明BD⊥DF即可證明AC⊥BD.
試題解析:∵AD∥BC,∴△EAD∽△ECB. ∴AE:CE=DE:BE.
∵AE=4,CE=8,DE=3,∴BE=6.
∵S梯形=(AD+BC)×=54,∴AD+BC=15.
過D作DF∥AC交BC延長(zhǎng)線于F,則四邊形ACFD是平行四邊形,
∴CF="AD." ∴BF=AD+BC=15.
在△BDF中,BD2+DF2=92+122=225,BF2=225,∴BD2+DF2=BF2. ∴BD⊥DF.
∵AC∥DF,∴AC⊥BD.
考點(diǎn):1.梯形的性質(zhì);2.相似三角形的判定和性質(zhì);3.平行四邊形的判定和性質(zhì);4.勾股定理的逆定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在邊長(zhǎng)為1的正方形網(wǎng)格中有兩個(gè)三角形△ABC和△DEF,試證這兩個(gè)三角形相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
提出問題
如圖1,在等邊△ABC中,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等邊△AMN,連結(jié)CN.求證:∠ABC=∠ACN.
類比探究
如圖2,在等邊△ABC中,點(diǎn)M是BC延長(zhǎng)線上的任意一點(diǎn)(不含端點(diǎn)C),其它條件不變,(1)中結(jié)論∠ABC=∠ACN還成立嗎?請(qǐng)說明理由.
拓展延伸
如圖3,在等腰△ABC中,BA=BC,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.連結(jié)CN.試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在邊長(zhǎng)為4的正方形ABCD中,點(diǎn)P在AB上從A向B運(yùn)動(dòng),連接DP交AC于點(diǎn)Q.
(1)試證明:無論點(diǎn)P運(yùn)動(dòng)到AB上何處時(shí),都有△ADQ≌△ABQ;
(2)當(dāng)點(diǎn)P在AB上運(yùn)動(dòng)到什么位置時(shí),△ADQ的面積是正方形ABCD面積的;
(3)若點(diǎn)P從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B,再繼續(xù)在BC上運(yùn)動(dòng)到點(diǎn)C,在整個(gè)運(yùn)動(dòng)過程中,當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△ADQ恰為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在邊長(zhǎng)為6的菱形ABCD中,動(dòng)點(diǎn)M從點(diǎn)A出發(fā),沿A→B→C向終點(diǎn)C運(yùn)動(dòng),連接DM交AC于點(diǎn)N.
(1)如圖1,當(dāng)點(diǎn)M在AB邊上時(shí),連接BN
①試說明:;
②若∠ABC=60°,AM=4,求點(diǎn)M到AD的距離.
(2)如圖2,若∠ABC=90°,記點(diǎn)M運(yùn)動(dòng)所經(jīng)過的路程為x(6≤x≤12).試問:x為何值時(shí),△ADN為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知:如圖,在菱形ABCD中,E為BC邊上一點(diǎn),∠AED=∠B.
(1)求證:△ABE∽△DEA;
(2)若AB=4,求AE•DE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在△ABC中,∠ACB=90°,∠A<45°,點(diǎn)O為AB中點(diǎn),一個(gè)足夠大的三角板的直角頂點(diǎn)與點(diǎn)O重合,一邊OE經(jīng)過點(diǎn)C,另一邊OD與AC交于點(diǎn)M.
(1)如圖1,當(dāng)∠A=30°時(shí),求證:MC2=AM2+BC2;
(2)如圖2,當(dāng)∠A≠30°時(shí),(1)中的結(jié)論是否成立?如果成立,請(qǐng)說明理由;如果不成立,請(qǐng)寫出你認(rèn)為正確的結(jié)論,并說明理由;
(3)將三角形ODE繞點(diǎn)O旋轉(zhuǎn),若直線OD與直線AC相交于點(diǎn)M,直線OE與直線BC相交于點(diǎn)N,連接MN,則MN2=AM2+BN2成立嗎?
答: (填“成立”或“不成立”)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com