點E在正方形ABCD的邊AB上,且BE=1,CE=2,則正方形的面積是

[  ]

A.cm2
B.cm2
C.3cm2
D.5cm2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)精英家教網(wǎng)(一)如圖,放在直角坐標(biāo)系中的正方形ABCD的邊長為4.現(xiàn)做如下實驗:
拋擲一枚均勻的正四面體骰子(它有四個頂點,各頂點的點數(shù)分別是1至4這四個數(shù)字中的一個),每個頂點朝上的機(jī)會是相同的,連續(xù)拋擲兩次,將骰子朝上的頂點的點數(shù)作為直角坐標(biāo)系中P點的坐標(biāo)(第一次的點數(shù)作橫坐標(biāo),第二次的點數(shù)作縱坐標(biāo)).
(1)求P點落在正方形ABCD面上(含正方形內(nèi)和邊界,下同)的概率;
(2)將正方形ABCD平移整數(shù)個單位,則是否存在一種平移,使點P落在正方形ABCD面上的概率為
34
?若存在,指出其中的一種平移方式;若不存在,請說明理由;
(二)若將(一)中所做實驗用的“正四面體骰子”改為“各面標(biāo)有1至6這六個數(shù)字中的一個的正方體骰子”,其余(實驗步驟、作用)均不變.將正方形ABCD平移整數(shù)個單位,試求出點P落在正方形ABCD面上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鄭州模擬)如圖1,直角∠EPF的頂點和正方形ABCD的頂點C重合,兩直角邊PE,PF分別和AB,AD所在的直線交于點E和F.易得△PBE≌△PDF,故結(jié)論“PE=PF”成立;
(1)如圖2,若點P在正方形ABCD的對角線AC上,其他條件不變,(1)中的結(jié)論是否仍然成立?說明理由;
(2)如圖(3)將(2)中正方形ABCD改為矩形ABCD其他條件不變,若AB=m,BC=n,直接寫出
PEPF
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

小明在探究問題“正方形ABCD內(nèi)一點E到A、B、C三點的距離之和的最小值”時,由于EA、EB、EC比較分散,不便解決.于是將△ABE繞點B逆時針旋轉(zhuǎn)60°得△AnBEn,連接EE′.
(1)小明得到的△EBE'是什么三角形?(直接寫出結(jié)果,不必說出理由)
(2)圖1中連接A′C,試比較AE+BE+CE與A′C的大小.
(3)當(dāng)點E在正方形ABCD內(nèi)移動時,猜測AE+BE+CE有無最小值?如有利用圖2畫出符合題意的圖示并說出理由;如果不存在最小值,簡述理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•道外區(qū)一模)如圖,點E在正方形ABCD的邊上,連接BE,將正方形折疊,使點B與點E重合,折痕GH交BC邊于點G,交AD邊于點H,若tan∠EBC=
13
,AD+DE=15,則線段AH的長為
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD的面積為16,△ABE是等邊三角形,點E在正方形ABCD內(nèi),在對角線BD上有一點P,使PC+PE的和最小,則這個最小值為( 。

查看答案和解析>>

同步練習(xí)冊答案