如圖,在梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=5,E為DC中點,tan∠C=.則AE的長度為_ __.
【解析】
試題分析:先過E作BC的垂線,交BC于F,交AD延長線于M,根據(jù)AAS證明△MDE≌△FCE,得出EF=ME,DM=CF,可求得DM的長,再通過解直角三角形可求得MF的長,最后利用勾股定理求得AE的長.
過點E作BC的垂線交BC于點F,交AD的延長線于點M,
∵AD∥BC,E是DC的中點,
∴∠M=∠MFC,DE=CE;
在△MDE和△FCE中,
∴△MDE≌△FCE,
∴EF=ME,DM=CF.
∵AD=2,BC=5,
∴EF=ME=2,
考點:直角三角形的性質(zhì),全等三角形的判定
點評:此類問題是初中數(shù)學的重點和難點,在中考中極為常見,一般以壓軸題形式出現(xiàn),難度較大.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
A、3cm | B、7cm | C、3cm或7cm | D、2cm |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com