【題目】閱讀下列材料:
某同學(xué)遇到這樣一個(gè)問題:在平面直角坐標(biāo)系中,已知直線點(diǎn)在拋物線上,求點(diǎn)到直線的距離.
如圖1,他過點(diǎn)作于點(diǎn)軸分別交軸于點(diǎn)交直線于點(diǎn).他發(fā)現(xiàn),可求出的長(zhǎng),再利用求出的長(zhǎng),即為點(diǎn)到直線的距離.
請(qǐng)回答:
(1)圖1中, ,點(diǎn)到直線的距離 .
參考該同學(xué)思考問題的方法,解決下列問題:
在平面直角坐標(biāo)系中,點(diǎn)是拋物線上的一動(dòng)點(diǎn),設(shè)點(diǎn)到直線的距離為.
(2)如圖2,
①,則點(diǎn)的坐標(biāo)為 ;
②,在點(diǎn)運(yùn)動(dòng)的過程中,求的最小值;
(3)如圖3,,在點(diǎn)運(yùn)動(dòng)的過程中,的最小值是 .
【答案】(1)3,;(2)①(0,5)或(3,2);②;(3)
【解析】
(1)由題意得:d=AB=AD=,即可求解;(2)如設(shè)點(diǎn)M的坐標(biāo)為(m,m2-4m+5),則點(diǎn)N坐標(biāo)為(m,-m),則由(1)知:d=MH=MN,即可求解;(3)如下圖,點(diǎn)M的坐標(biāo)為(m,m2-4m+5),則點(diǎn)N坐標(biāo)為(m,2m-7),由題意得:tanα=2,則d=MH=MNcosα即可求解.
(1)∵點(diǎn)A(1,t)在拋物線y=x2-4x+5上,
∴t=1-4+5=2,
∴點(diǎn)A的坐標(biāo)為(1,2).
∵AD∥y軸交直線l于點(diǎn)D,直線l:y=-x,
∴點(diǎn)D的坐標(biāo)為(1,-1),
∴AD=2-(-1)=3.
∵△ABD為等腰直角三角形,∠ABD=90°,
∴d=AB=AD=.
(2)如圖,過點(diǎn)M作y軸的平行線交直線l于點(diǎn)N,過點(diǎn)M作MH⊥l,交l于點(diǎn)H,設(shè)點(diǎn)M的坐標(biāo)為(m,m2-4m+5),則點(diǎn)N坐標(biāo)為(m,-m),則MN=m2-3m+5,
,
∵,
∴,
解得:M坐標(biāo)為(0,5)或(3,2);
②,
則d的最小值;
(3)如圖,過點(diǎn)M作y軸的平行線交x軸于點(diǎn)G,交直線l于點(diǎn)N,過點(diǎn)M作MH⊥l,交l于點(diǎn)H,
設(shè)點(diǎn)M的坐標(biāo)為(m,m2-4m+5),則點(diǎn)N坐標(biāo)為(m,2m-7),
由題意得:tanα=2,則,
則d=MH=MN(m2-4m+5-2m+7)= [(m-3)2+3],
故d的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半徑為10的⊙中,弦,所對(duì)的圓心角分別是,,若,,則弦的長(zhǎng)等于( )
A. 18B. 16C. 10D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=(x-m)2-(x-m),其中m是常數(shù).
(1)求證:不論m為何值,該拋物線與x軸一定有兩個(gè)公共點(diǎn).
(2)若該拋物線的對(duì)稱軸為直線,求該拋物線的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,老師提出了這樣一個(gè)問題:如圖,己知.求作:過三點(diǎn)的圓.
小蕓是這樣思考的:圓心確定一個(gè)圈的位置,半徑確定一個(gè)圓的大小要作同時(shí)經(jīng)過幾個(gè)定點(diǎn)的圓,就是要先找到一個(gè)點(diǎn),使得這個(gè)點(diǎn)到這幾個(gè)定點(diǎn)的距離都相等.這樣既定了圓心,又定了半徑,就能畫出滿足條件的圓了.
小智聽了小蕓的分析后,按照這個(gè)思路很快就畫出了一個(gè)過三點(diǎn)的圓.
請(qǐng)你在答題紙上而出這個(gè)圓,并寫出作圖的主要依據(jù),
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD是邊AB上的高.
(1)求證:△ABC∽△CBD;
(2)如果AC=4,BC=3,求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某養(yǎng)殖場(chǎng)在養(yǎng)殖面積擴(kuò)建中,準(zhǔn)備將總長(zhǎng)為米的籬笆圍成 矩形形狀的雞舍,其中一邊利用現(xiàn)有的一段足夠長(zhǎng)的圍墻,其余三邊 用籬笆,且在與墻平行的一邊上開一個(gè)米寬的門.設(shè)邊長(zhǎng)為米, 雞舍面積為平方米.
求出與的函數(shù)關(guān)系式;(不需寫自變量的取值范圍).
當(dāng)雞舍的面積為平方米時(shí),求出雞舍的一邊的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,為等腰三角形,是底邊的中點(diǎn),腰與相切于點(diǎn),底交于點(diǎn),.
(1)求證:是的切線;
(2)如圖2,連接,交于點(diǎn),點(diǎn)是弧的中點(diǎn),若,,求的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù) 的圖象與正比例函數(shù) 的圖象相交于(1,),兩點(diǎn),點(diǎn)在第四象限,∥ 軸,.
(1)求的值及點(diǎn)的坐標(biāo);
(2)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,E為BC的中點(diǎn),將△ABE沿直線AE折疊時(shí)點(diǎn)B落在點(diǎn)F處,連接FC,若∠DAF=18°,則∠DCF=_____度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com