【題目】(12分)把正整數(shù)1,2,3,4,…,2017排列成如圖所示的一個(gè)數(shù)表.
(1)用一正方形在表中隨意框住4個(gè)數(shù),把其中最小的數(shù)記為x,另三個(gè)數(shù)用含x的式子表示出來,從大到小依次是 , , ;
(2)當(dāng)被框住的4個(gè)數(shù)之和等于416時(shí),x的值是多少?
(3)被框住的4個(gè)數(shù)之和能否等于622?如果能,請(qǐng)求出此時(shí)x的值;如果不能,請(qǐng)說明理由.
【答案】(1)x+8,x+7,x+1;(2)x=100;(3)不能.
【解析】試題分析:從表格可看出框的4個(gè)數(shù),左右相鄰的差1,上下相鄰的差7,設(shè)最小的數(shù)是x,右邊的就為x+1,x下面的就為x+7,x+7右邊的為x+8;把這四個(gè)數(shù)加起來和為416構(gòu)成一元一次方程,可以解得x;加起來看看四個(gè)數(shù)為622時(shí)是否為整數(shù),整數(shù)就可以,否則不行.
試題解析:解:(1)從表格可看出框的4個(gè)數(shù),左右相鄰的差1,上下相鄰的差7,設(shè)最小的數(shù)是x,右邊的就為x+1,x下面的就為x+7,x+7右邊的為x+8,所以這三個(gè)數(shù)為x+1,x+7,x+8;
(2)x+(x+1)+(x+7)+(x+8)=416,4x+16=416,x=100;
(3)被框住的4個(gè)數(shù)之和不可能等于622.∵x+(x+1)+(x+7)+(x+8)=622,4x+16=622,x=151.5,∵x是正整數(shù),不可能是151.5,∴被框住的4個(gè)數(shù)之和不可能等于622.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)如圖,△ABD≌△EBC,AB=3cm,BC=6cm,
(1)求DE的長.
(2)若A、B、C在一條直線上,則DB與AC垂直嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016山東省聊城市第25題)如圖,已知拋物線y=ax2+bx+c經(jīng)過點(diǎn)A(﹣3,0),B(9,0)和C(0,4).CD垂直于y軸,交拋物線于點(diǎn)D,DE垂直與x軸,垂足為E,l是拋物線的對(duì)稱軸,點(diǎn)F是拋物線的頂點(diǎn).
(1)求出二次函數(shù)的表達(dá)式以及點(diǎn)D的坐標(biāo);
(2)若Rt△AOC沿x軸向右平移到其直角邊OC與對(duì)稱軸l重合,再沿對(duì)稱軸l向上平移到點(diǎn)C與點(diǎn)F重合,得到Rt△A1O1F,求此時(shí)Rt△A1O1F與矩形OCDE重疊部分的圖形的面積;
(3)若Rt△AOC沿x軸向右平移t個(gè)單位長度(0<t≤6)得到Rt△A2O2C2,Rt△A2O2C2與Rt△OED重疊部分的圖形面積記為S,求S與t之間的函數(shù)表達(dá)式,并寫出自變量t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計(jì)算正確的是( )
A.a+a2=2a3
B.a2a3=a6
C.(2a4)4=16a8
D.(﹣a)6÷a3=a3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B兩地相距600km,一輛快車從A地開出,每小時(shí)走120km,一列慢車從B地開出, 每小時(shí)走80km。
(1)兩輛車同時(shí)開出,相向而行,多少小時(shí)后相遇?
(2)兩輛車同時(shí)開出,背向而行,多少時(shí)間后輛車相距800km?
(3)兩輛車同時(shí)開出,相向而行,多少小時(shí)后輛車相距120km?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下表,從左到右在每個(gè)小格子中都填入一個(gè)整數(shù),使得其中任意三個(gè)相鄰格子中所填整數(shù)之和都相等,則第2011個(gè)格子中的數(shù)為 ( )
A. 3 B. 2 C. 0 D. -1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016山東省聊城市第19題)如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).
(1)若△ABC經(jīng)過平移后得到△A1B1C1,已知點(diǎn)C1的坐標(biāo)為(4,0),寫出頂點(diǎn)A1,B1的坐標(biāo);
(2)若△ABC和△A1B2C2關(guān)于原點(diǎn)O成中心對(duì)稱圖形,寫出△A1B2C2的各頂點(diǎn)的坐標(biāo);
(3)將△ABC繞著點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)90°得到△A2B3C3,寫出△A2B3C3的各頂點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四種統(tǒng)計(jì)圖:①條形圖;②扇形圖;③折線圖;④直方圖.四個(gè)特點(diǎn):(a)易于比較數(shù)據(jù)之間的差異;(b)易于顯示各組之間的頻數(shù)的差別;(c)易于顯示數(shù)據(jù)的變化趨勢(shì);(d)易于顯示每組數(shù)據(jù)相對(duì)于總數(shù)的大小.統(tǒng)計(jì)圖與特點(diǎn)選配方案分別是:①與(a);②與(c);③與(d);④與(b). 其中選配方案正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】蕪湖長江大橋是中國跨度最大的公路和鐵路兩用橋梁,大橋采用低塔斜拉橋橋型(如甲圖),圖乙是從圖甲引申出的平面圖,假設(shè)你站在橋上測得拉索AB與水平橋面的夾角是30°,拉索CD與水平橋面的夾角是60°,兩拉索頂端的距離BC為2米,兩拉索底端距離AD為20米,請(qǐng)求出立柱BH的長.(結(jié)果精確到0.1米,≈1.732)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com