【題目】下列計算正確的是( )
A.4a﹣3a=1
B.a6÷a3=a2
C.2a2a=2a3
D.3a+2b=5ab

【答案】C
【解析】A.∵4a﹣3a=a,故錯誤;A不符合題意;

B.∵a6÷a3=a3,故錯誤;B不符合題意;

C.∵2a2a=2a3,故正確;C符合題意;

D.∵3a與2b不是同類項,不能合并,故錯誤;D不符合題意;

所以答案是:C.

【考點精析】掌握合并同類項和同底數(shù)冪的乘法是解答本題的根本,需要知道在合并同類項時,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變;同底數(shù)冪的乘法法則aman=am+n(m,n都是正數(shù)).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,AD∥MN∥BC.MN分別交邊AB、DC于點M、N.如果AM:MB=2:3,AD=2,BC=7.求MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某鮮花銷售部在春節(jié)前20天內(nèi)銷售一批鮮花.其中,該銷售部公司的鮮花批發(fā)部日銷售量y1(萬朵)與時間xx為整數(shù),單位:天)關(guān)系為二次函數(shù),部分對應(yīng)值如表所示.與此同時,該銷售部還通過某網(wǎng)絡(luò)電子商務(wù)平臺銷售鮮花,網(wǎng)上銷售日銷售量y2(萬朵)與時間xx為整數(shù),單位:天) 的函數(shù)關(guān)系如圖所示.

1)求y1x的二次函數(shù)關(guān)系式及自變量x的取值范圍;

2)求y2x的函數(shù)關(guān)系式及自變量x的取值范圍;

3)當(dāng)8≤x≤20時,設(shè)該花木公司鮮花日銷售總量為y萬朵,寫出y與時間x的函數(shù)關(guān)系式,并判斷第幾天日銷售總量y最大,并求出此時的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了測量校園水平地面上一棵不可攀的樹的高度,學(xué)校數(shù)學(xué)興趣小組做了如下探索:根據(jù)光的反射定律,利用一面鏡子和一根皮尺,設(shè)計如下圖所示的測量方案:把一面很小的鏡子水平放置在離B(樹底)8.4米的點E處,然后沿著直線BE后退到點D,這時恰好在鏡子里看到樹梢頂點A,再用皮尺量得DE=3.2米,觀察者目高CD=1.6米,求樹AB的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于三角形角平分線的說法錯誤的是( )

A. 兩角平分線交點在三角形內(nèi)

B. 兩角平分線的交點在第三個角的平分線上

C. 兩角平分線交點到三邊距離相等

D. 兩角平分線交點到三個頂點的距離相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程:x2﹣2m+1x+m2+5=0有兩個不相等的實數(shù)根.

(1)求m的取值范圍;

(2)若原方程的兩個實數(shù)根為x1、x2, 且滿足x12+x22=|x1|+|x2|+2x1x2,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】命題:三角形中至多有兩個角大于60,用反證法證明時第一步需要假設(shè)_________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一個20米高的樓頂上有一信號塔DC,某同學(xué)為了測量信號塔的高度,在地面的A處測得信號塔下端D的仰角為30°,然后他正對塔的方向前進(jìn)了8米到達(dá)B處,又測得信號塔頂端C的仰角為45°,CEAB于點E,EB、A在一條直線上.則信號塔CD的高度為(  )

A. 20 B. (208) C. (2028) D. (2020)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】代數(shù)式x2+x+2的值為0,則代數(shù)式2x2+2x﹣3的值為( )
A.6
B.7
C.﹣6
D.﹣7

查看答案和解析>>

同步練習(xí)冊答案