【題目】如圖,在中,,點(diǎn)為邊上的動(dòng)點(diǎn),點(diǎn)從點(diǎn)出發(fā),沿邊向點(diǎn)運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)到點(diǎn)時(shí)停止,若設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為秒,點(diǎn)運(yùn)動(dòng)的速度為每秒2個(gè)單位長度.
(1)當(dāng)時(shí),= ,= ;
(2)求當(dāng)為何值時(shí),是直角三角形,說明理由;
(3)求當(dāng)為何值時(shí),,并說明理由.
【答案】(1)CD=4,AD=16;(2)當(dāng)t=3.6或10秒時(shí),是直角三角形,理由見解析;(3)當(dāng)t=7.2秒時(shí),,理由見解析
【解析】
(1)根據(jù)CD=速度×?xí)r間列式計(jì)算即可得解,利用勾股定理列式求出AC,再根據(jù)AD=AC-CD代入數(shù)據(jù)進(jìn)行計(jì)算即可得解;
(2)分①∠CDB=90°時(shí),利用△ABC的面積列式計(jì)算即可求出BD,然后利用勾股定理列式求解得到CD,再根據(jù)時(shí)間=路程÷速度計(jì)算;②∠CBD=90°時(shí),點(diǎn)D和點(diǎn)A重合,然后根據(jù)時(shí)間=路程÷速度計(jì)算即可得解;
(3)過點(diǎn)B作BF⊥AC于F,根據(jù)等腰三角形三線合一的性質(zhì)可得CD=2CF,再由(2)的結(jié)論解答.
解:(1)t=2時(shí),CD=2×2=4,
∵∠ABC=90°,AB=16,BC=12,
∴AD=AC-CD=20-4=16;
(2)①∠CDB=90°時(shí),
∴解得BD=9.6,
∴
t=7.2÷2=3.6秒;
②∠CBD=90°時(shí),點(diǎn)D和點(diǎn)A重合,
t=20÷2=10秒,
綜上所述,當(dāng)t=3.6或10秒時(shí),是直角三角形;
(3)如圖,過點(diǎn)B作BF⊥AC于F,
由(2)①得:CF=7.2,
∵BD=BC,
∴CD=2CF=7.2×2=14.4,
∴t=14.4÷2=7.2,
∴當(dāng)t=7.2秒時(shí),,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=-x2+bx+c與直線y=-x的交點(diǎn)A、B的橫坐標(biāo)分別為2和.點(diǎn)P是直線上方拋物線上的一動(dòng)點(diǎn),過點(diǎn)P作PD⊥AB于點(diǎn)D,作PE⊥x軸交AB于點(diǎn)E.
(1)直接寫出點(diǎn)A、B的坐標(biāo);
(2)求拋物線的關(guān)系式;
(3)判斷△OBC形狀,并說明理由;
(4)設(shè)點(diǎn)P的橫坐標(biāo)為n,線段PD的長為y,求y關(guān)于n的函數(shù)關(guān)系式;
(5)定義符號(hào)min{a,b)}的含義為:當(dāng)a≥b時(shí),min{a,b}=b;當(dāng)a<b時(shí),min{a,b}=a.如min{2,0}=0,min{-3,4}=-3.直接寫出min{-x2+bx+c,-x}的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2+2x-3與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,對(duì)稱軸為直線l,點(diǎn)D(-4,n)在拋物線上.
(1)求直線CD的解析式;
(2)E為直線CD下方拋物線上的一點(diǎn),連接EC,ED,當(dāng)△ECD的面積最大時(shí),在直線l上取一點(diǎn)M,過M作y軸的垂線,垂足為點(diǎn)N,連接EM,BN,若EM=BN時(shí),求EM+MN+BN的值.
(3)將拋物線y=x2+2x-3沿x軸正方向平移得到新拋物線y′,y′經(jīng)過原點(diǎn)O,y′與x軸的另一個(gè)交點(diǎn)為F,設(shè)P是拋物線y′上任意一點(diǎn),點(diǎn)Q在直線l上,△PFQ能否成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若能,直接寫出點(diǎn)P的坐標(biāo),若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的直徑AE=10cm,∠B=∠EAC,則AC的長為( )
A. 5cm B. 5cm C. 5 cm D. 6cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B(0,2),且與正比例函數(shù)y=x的圖象交于點(diǎn)C(m,3).
(1)求一次函數(shù)y=kx+b(k≠0)的函數(shù)關(guān)系式;
(2)△AOC的面積為______;
(3)若點(diǎn)M在第二象限,△MAB是以AB為直角邊的等腰直角三角形,直接寫出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn),過點(diǎn)做直線平行于軸,點(diǎn)關(guān)于直線對(duì)稱點(diǎn)為.
(1)求點(diǎn)的坐標(biāo);
(2)點(diǎn)在直線上,且位于軸的上方,將沿直線翻折得到,若點(diǎn)恰好落在直線上,求點(diǎn)的坐標(biāo)和直線的解析式;
(3)設(shè)點(diǎn)在直線上,點(diǎn)在直線上,當(dāng)為等邊三角形時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中踏集團(tuán)銷售某種商品,每件進(jìn)價(jià)為10元。在銷售過程中發(fā)現(xiàn),平均每天的銷售量y(件)與銷售價(jià)x(元/件)(不低于進(jìn)價(jià))之間的關(guān)系可近似的看做一次函數(shù):;
(1)求中踏集團(tuán)平均每天銷售這種商品的利潤w(元)與銷售價(jià)x之間的函數(shù)關(guān)系式;
(2)當(dāng)這種商品的銷售價(jià)為多少元時(shí),可以獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2013年6月,某中學(xué)結(jié)合廣西中小學(xué)閱讀素養(yǎng)評(píng)估活動(dòng),以“我最喜愛的書籍”為主題,對(duì)學(xué)生最喜愛的一種書籍類型進(jìn)行隨機(jī)抽樣調(diào)查,收集整理數(shù)據(jù)后,繪制出以下兩幅未完成的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖1和圖2提供的信息,解答下列問題:
(1)在這次抽樣調(diào)查中,一共調(diào)查了多少名學(xué)生?
(2)請(qǐng)把折線統(tǒng)計(jì)圖(圖1)補(bǔ)充完整;
(3)求出扇形統(tǒng)計(jì)圖(圖2)中,體育部分所對(duì)應(yīng)的圓心角的度數(shù);
(4)如果這所中學(xué)共有學(xué)生1800名,那么請(qǐng)你估計(jì)最喜愛科普類書籍的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,M、N是平行四邊形ABCD對(duì)角線BD上兩點(diǎn).
(1)若BM=MN=DN,求證:四邊形AMCN為平行四邊形;
(2)若M、N為對(duì)角線BD上的動(dòng)點(diǎn)(均可與端點(diǎn)重合),設(shè)BD=12cm,點(diǎn)M由點(diǎn)B向點(diǎn)D勻速運(yùn)動(dòng),速度為2(cm/s),同時(shí)點(diǎn)N由點(diǎn)D向點(diǎn)B勻速運(yùn)動(dòng),速度為 a(cm/s),運(yùn)動(dòng)時(shí)間為t(s).若要使四邊形AMCN為平行四邊形,求a的值及t的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com