【題目】某地原有沙漠108公頃,綠洲54公頃,為改善生態(tài)環(huán)境,防止沙化現(xiàn)象,當(dāng)?shù)卣畬?shí)施了沙漠變綠洲”工程,要把部分沙漠改造為綠洲,使綠洲面積占沙漠面積的80%.設(shè)把x公頃沙漠改造為綠洲,則可列方程為( )
A.54+x=80%×108
B.54+x=80%(108-x)
C.54-x=80%(108+x)
D.108-x=80%(54+x)

【答案】B
【解析】解:設(shè)把x公頃沙漠改造為綠洲 ,由題意
得 54+x=80%(108-x) 。
故應(yīng)選:B 。

設(shè)把x公頃沙漠改造為綠洲,則綠洲面積為( 54+x)公頃,沙漠面積為(108-x)公頃,根據(jù)把部分沙漠改造為綠洲,使綠洲面積占沙漠面積的80%.列出方程即可。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個(gè)等腰三角形的兩邊長(zhǎng)分別為方程x2﹣5x+4=0的兩根,則這個(gè)等腰三角形的周長(zhǎng)為( )
A.6
B.9
C.6或9
D.以上都不正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中,對(duì)稱軸的條數(shù)最多的圖形是( 。

A. 線段 B. C. 等腰三角形 D. 正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列事件為必然事件的是( ).

A.畫一個(gè)四邊形,其內(nèi)角為180°

B.用長(zhǎng)度分別是4,69的三條線段能圍成一個(gè)三角形

C.NBA球員庫里罰籃兩罰全中

D.200個(gè)白球中放入1個(gè)紅球,搖勻后隨機(jī)摸出1球就摸出了紅球

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)正整數(shù)能表示為兩個(gè)正整數(shù)的平方差,則稱這個(gè)正整數(shù)為智慧數(shù)(如3=22-1216=52-32,則316是智慧數(shù)).已知按從小到大的順序構(gòu)成如下數(shù)列:35,7,8,9,1112,13,15,16,17,19,20,2123,24,25,則第2 013個(gè)智慧數(shù)______.

【答案】2 687

【解析】解析:觀察數(shù)的變化規(guī)律,可知全部智慧數(shù)從小到大可按每三個(gè)數(shù)分一組,從第2組開始每組的第一個(gè)數(shù)都是4的倍數(shù),歸納可得,第n組的第一個(gè)數(shù)為4nn≥2.因?yàn)?/span>2 013÷3=671,所以第2 013個(gè)智慧數(shù)是第671組中的第3個(gè)數(shù),即為4×671+3=2 687.

點(diǎn)睛:找規(guī)律題需要記憶常見數(shù)列

1,2,3,4……n

1,3,5,7……2n-1

2,4,6,8……2n

2,4,8,16,32……

1,4,9,16,25……

2,6,12,20……n(n+1)

一般題目中的數(shù)列是利用常見數(shù)列變形而來,其中后一項(xiàng)比前一項(xiàng)多一個(gè)常數(shù),是等差數(shù)列,列舉找規(guī)律.后一項(xiàng)是前一項(xiàng)的固定倍數(shù),則是等比數(shù)列,列舉找規(guī)律.

型】填空
結(jié)束】
19

【題目】如圖,鄭某把一塊邊長(zhǎng)為a m的正方形的土地租給李某種植,他對(duì)李某說:我把你這塊地的一邊減少5 m,另一邊增加5 m,繼續(xù)租給你,你也沒有吃虧,你看如何”.李某一聽,覺得自己好像沒有吃虧,就答應(yīng)了.同學(xué)們,你們覺得李某有沒有吃虧?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于第二、四象限內(nèi)的A,B兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,點(diǎn)B的坐標(biāo)是(m,﹣4),連接AO,AO=5,sinAOC=

(1)求反比例函數(shù)的解析式;

(2)連接OB,求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,過點(diǎn)A,0)的兩條直線分別交y軸于B、C兩點(diǎn),且BC兩點(diǎn)的縱坐標(biāo)分別是一元二次方程x22x3=0的兩個(gè)根

1)求線段BC的長(zhǎng)度;

2)試問:直線AC與直線AB是否垂直?請(qǐng)說明理由;

3)若點(diǎn)D在直線AC上,且DB=DC,求點(diǎn)D的坐標(biāo);

4)在(3)的條件下,直線BD上是否存在點(diǎn)P,使以A、B、P三點(diǎn)為頂點(diǎn)的三角形是等腰三角形?若存在,請(qǐng)直接寫出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一只不透明的袋子中裝有白、紅、黑三種不同的球,其中白球有3個(gè),紅球有8個(gè),黑球有m個(gè),這些球除顏色外完全相同.若從袋子中任意取一個(gè)球,摸到黑球的可能性最小,則m的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè))與y軸交于點(diǎn)C(0,-3),對(duì)稱軸是直線x=1,直線BC與拋物線的對(duì)稱軸交于點(diǎn)D,點(diǎn)E為y軸上一動(dòng)點(diǎn),CE的垂直平分線交拋物線于P,Q兩點(diǎn)(點(diǎn)P在第三象限)

(1)求拋物線的函數(shù)表達(dá)式和直線BC的函數(shù)表達(dá)式;

(2)當(dāng)△CDE是直角三角形,且∠CDE=90° 時(shí),求出點(diǎn)P的坐標(biāo);

(3)當(dāng)△PBC的面積為時(shí),求點(diǎn)E的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案