【題目】今年的豬肉價(jià)格一直以來一路飆升,市民們一致聲稱:吃不起!近日,王老師通過相關(guān)部門了解到2019年1月到10月湖州各大超市的豬肉的月平均售價(jià),并繪制了如圖所示的函數(shù)圖象,其中1月份到5月份的豬肉售價(jià)y與月份x之間的關(guān)系符合線段AB,5月份到10月份的豬肉售價(jià)y與月份x之間的關(guān)系符合拋物線BC.已知點(diǎn)A(1,16),點(diǎn)B(5,17),點(diǎn)C(10,42),且點(diǎn)B是拋物線的頂點(diǎn).
(1)求線段AB和拋物線BC的解析式;
(2)已知1月份到5月份豬肉的平均進(jìn)價(jià)為13元/斤,5月份到10月份豬肉的平均進(jìn)價(jià)z與月份x之間的關(guān)系為z=3x﹣2(x為正整數(shù)),若設(shè)每銷售一斤豬肉獲得的利潤為w,試求1月到10月w至少是多少元?
【答案】(1)線段AB的解析式為:y=x+;拋物線BC的解析式為:y=(x﹣5)2+17;(2)1月到10月w至少是2元.
【解析】
(1)設(shè)線段AB的解析式為:y=kx+b,設(shè)拋物線BC的解析式為:y=a(x﹣5)2+17,解方程或方程組即可得到結(jié)論;
(2)當(dāng)1≤x≤5時(shí),當(dāng)5<x≤10時(shí),根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)論.
解:(1)設(shè)線段AB的解析式為:y=kx+b,
∵點(diǎn)A(1,16),點(diǎn)B(5,17),
∴
∴
∴線段AB的解析式為:y=x+;
∵點(diǎn)B是拋物線的頂點(diǎn),
∴設(shè)拋物線BC的解析式為:y=a(x﹣5)2+17,
把C(10,42)代入得,42=a(10﹣5)2+17,
解得:a=1,
∴拋物線BC的解析式為:y=(x﹣5)2+17;
(2)當(dāng)1≤x≤5時(shí),w=x+﹣13=x+,
故當(dāng)x=1時(shí),w有最小值為3;
當(dāng)5<x≤10時(shí),w=(x﹣5)2+17﹣(3x﹣2)=(x﹣6.5)2+1.75,
∵x為正整數(shù),
∴當(dāng)x=6或7時(shí),w有最小值2,
綜上所述,當(dāng)x=6或7時(shí),w有最小值2.
答:1月到10月w至少是2元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】被譽(yù)為“中原第一高樓”的鄭州會展賓館(俗稱“大玉米”)坐落在風(fēng)景如畫的如意湖畔,是來鄭州觀光的游客留影的最佳景點(diǎn),學(xué)完了三角函數(shù)知識后,劉明和王華同學(xué)決定用自己學(xué)到的知識測量“大玉米”的高度他們制訂了測量方案,并利用課余時(shí)間完成了實(shí)地測量,測量項(xiàng)目及結(jié)果如下表
請你幫助該小組根據(jù)上表中的測量數(shù)據(jù),求出鄭州會展賓館的高度.
(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道:三角形的三條角平分線交于一點(diǎn),這個(gè)點(diǎn)稱為三角形的內(nèi)心(三角形內(nèi)切圓的圓心).現(xiàn)在規(guī)定:如果四邊形的四個(gè)角的角平分線交于一點(diǎn),我們把這個(gè)點(diǎn)也成為“四邊形的內(nèi)心”.
(1)試舉出一個(gè)有內(nèi)心的四邊形.
(2)如圖1,已知點(diǎn)O是四邊形ABCD的內(nèi)心,求證:AB+CD=AD+BC.
(3)如圖2,Rt△ABC中,∠C=90°.O是△ABC的內(nèi)心.若直線DE截邊AC、BC于點(diǎn)D.E,且O仍然是四邊形ABED的內(nèi)心.這樣的直線DE可畫多少條?請?jiān)趫D2中畫出一條符合條件的直線DE,并簡單說明作法.
(4)問題(3)中,若AC=3,BC=4,滿足條件的一條直線DE∥AB,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△EDC.若點(diǎn)A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是
A. 55° B. 60° C. 65° D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將水平放置的三角板ABC繞直角頂點(diǎn)A逆時(shí)針旋轉(zhuǎn),得到△AB'C',連結(jié)并延長BB'、C'C相交于點(diǎn)P,其中∠ABC=30°,BC=4.
(1)若記B'C'中點(diǎn)為點(diǎn)D,連結(jié)PD,則PD=_____;
(2)若記點(diǎn)P到直線AC'的距離為d,則d的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知不等臂蹺蹺板AB長為3米,蹺蹺板AB的支撐點(diǎn)O到地面上的點(diǎn)H的距高OH=0.6米。當(dāng)蹺蹺板AB的一個(gè)端點(diǎn)A碰到地面時(shí),AB與地面上的直線AH的夾角∠OAH的度數(shù)為30°.
(1)當(dāng)AB的另一個(gè)端點(diǎn)B碰到地面時(shí)(如右圖),蹺蹺板AB與直線BH的夾角∠ABH的正弦值是多少?
(2)當(dāng)AB的另一個(gè)端點(diǎn)B碰到地面時(shí)(如右圖),點(diǎn)A到直線BH的距離是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,□ABCD中,BF平分∠ABC交AD于點(diǎn)F,CE平分∠DCB交AD于點(diǎn)E,BF和CE相交于點(diǎn)P.
(1)求證:AE=DF.
(2)已知AB=4,AD=5.
①求的值;
②求四邊形ABPE的面積與△BPC的面積之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形中,,點(diǎn)D是延長線上一點(diǎn),且,點(diǎn)E在直線上,當(dāng)時(shí),的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=k1x+b(k1≠0)的圖象分別與x軸,y軸相交于點(diǎn)A,B,與反比例函數(shù)y2= 的圖象相交于點(diǎn)C(﹣4,﹣2),D(2,4).
(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)當(dāng)x為何值時(shí),y1>0;
(3)當(dāng)x為何值時(shí),y1<y2,請直接寫出x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com