探索規(guī)律:貨物箱按如圖方式堆放(自下而上依次為第1層、第2層、…),受堆放條件限制,堆放時(shí)應(yīng)符合下列條件:每層堆放貨物箱的個(gè)數(shù)與層數(shù)n之間滿足關(guān)系式為正整數(shù).

例如,當(dāng)時(shí),, 當(dāng)時(shí),,則:
           ,            
⑵ 第n層比第(n+1)層多堆放           個(gè)貨物箱.(用含n的代數(shù)式表示)

(1)157, 135 (2)31-2n

解析試題分析:依據(jù)題意可以推理得到:
,
同時(shí)依據(jù)上述推理,可知:

考點(diǎn):數(shù)字—字母規(guī)律
點(diǎn)評(píng):本題屬于數(shù)字規(guī)律推導(dǎo)運(yùn)算題,考生在解答時(shí)要注意分析基本的數(shù)字規(guī)律推導(dǎo),進(jìn)而代入分析即可

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

探索規(guī)律:貨物箱按如圖方式堆放(自下而上依次為第1層、第2層、…),受堆放條件限制,堆放時(shí)應(yīng)符合下列條件:每層堆放貨物箱的個(gè)數(shù)an與層數(shù)n之間滿足關(guān)系式an=n2-32n+247,n為正整數(shù).例如,當(dāng)n=1時(shí),a1=12-32×1+247=216,
當(dāng)n=2時(shí),a2=22-32×2+247=187,則:
(1)a3=
160
160
,a4=
135
135
;
(2)第n層比第(n+1)層多堆放
-2n+31
-2n+31
個(gè)貨物箱.(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013學(xué)年浙江省杭州市拱墅區(qū)第一學(xué)期期末教學(xué)質(zhì)量調(diào)研七年級(jí)數(shù)學(xué)試卷(解析版) 題型:填空題

探索規(guī)律:貨物箱按如圖方式堆放(自下而上依次為第1層、第2層、…),受堆放條件限制,堆放時(shí)應(yīng)符合下列條件:每層堆放貨物箱的個(gè)數(shù)與層數(shù)n之間滿足關(guān)系式,為正整數(shù).

例如,當(dāng)時(shí),, 當(dāng)時(shí),,則:

           ,            ;

⑵ 第n層比第(n+1)層多堆放           個(gè)貨物箱.(用含n的代數(shù)式表示)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

探索規(guī)律:貨物箱按如圖方式堆放(自下而上依次為第1層、第2層、…),受堆放條件限制,堆放時(shí)應(yīng)符合下列條件:每層堆放貨物箱的個(gè)數(shù)an與層數(shù)n之間滿足關(guān)系式數(shù)學(xué)公式,n為正整數(shù).例如,當(dāng)n=1時(shí),數(shù)學(xué)公式,
當(dāng)n=2時(shí),數(shù)學(xué)公式,則:
(1)a3=______,a4=______;
(2)第n層比第(n+1)層多堆放_(tái)_____個(gè)貨物箱.(用含n的代數(shù)式表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案