對(duì)于任意兩個(gè)二次函數(shù):y1=a1x2+b1x+c1,y2=a2x2+b2x+c2,(a1a2≠0),當(dāng)|a1|=|a2|時(shí),我們稱(chēng)這兩個(gè)二次函數(shù)的圖象為全等拋物線.
現(xiàn)有△ABM,A(-1,0),B(1,0).記過(guò)三點(diǎn)的二次函數(shù)拋物線為“C□□□”(“□□□”中填寫(xiě)相應(yīng)三個(gè)點(diǎn)的字母)
(1)若已知M(0,1),△ABM≌△ABN(0,-1).請(qǐng)通過(guò)計(jì)算判斷CABM與CABN是否為全等拋物線;
(2)在圖2中,以A、B、M三點(diǎn)為頂點(diǎn),畫(huà)出平行四邊形.
①若已知M(0,n),求拋物線CABM的解析式,并直接寫(xiě)出所有過(guò)平行四邊形中三個(gè)頂點(diǎn)且能與CABM全等的拋物線解析式.
②若已知M(m,n),當(dāng)m,n滿足什么條件時(shí),存在拋物線CABM根據(jù)以上的探究結(jié)果,判斷是否存在過(guò)平行四邊形中三個(gè)頂點(diǎn)且能與CABM全等的拋物線?若存在,請(qǐng)列出所有滿足條件的拋物線“C□□□”;若不存在,請(qǐng)說(shuō)明理由.
(1)設(shè)拋物線CABM的解析式為y=ax2+bx+c,
∵拋物線CABM過(guò)點(diǎn)A(-1,0),B(1,0),M(0,1),
0=a-b+c
0=a+b+c
1=c

a=-1
b=0
c=1

∴拋物線CABM的解析式為y=-x2+1,
同理可得拋物線CABN的解析式為y=x2+1,
∵|-1|=|1|,
∴CABM與CABN是全等拋物線.

(2)①設(shè)拋物線CABM的解析式為y=ax2+bx+c,
∵拋物線CABM過(guò)點(diǎn)A(-1,0),B(1,0),M(0,n),
0=a-b+c
0=a+b+c
n=c

拋物線CABM的解析式為y=-nx2+n,
與CABM全等的拋物線有:
y=nx2-n,y=n(x-1)2,y=n(x+1)2
②當(dāng)n≠0且m≠±1時(shí),存在拋物線CABM,與CABM全等的拋物線有:CABN,CAME,CBMF
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,某隧道口的橫截面是拋物線形,已知路寬AB為6米,最高點(diǎn)離地面的距離OC為5米.以最高點(diǎn)O為坐標(biāo)原點(diǎn),拋物線的對(duì)稱(chēng)軸為y軸,1米為數(shù)軸的單位長(zhǎng)度,建立平面直角坐標(biāo)系.求:
(1)以這一部分拋物線為圖象的函數(shù)解析式,并寫(xiě)出x的取值范圍.
(2)有一輛寬2米,高2.5米的農(nóng)用貨車(chē)(貨物最高處與地面AB的距離)能否通過(guò)此隧道?
(3)如果該隧道內(nèi)設(shè)雙行道,為了安全起見(jiàn),在隧道正中間設(shè)有0.2m寬的隔離帶,則該農(nóng)用貨車(chē)還能通過(guò)隧道嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=-
3
8
x2-
3
4
x+3
與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.
(1)求點(diǎn)A、B的坐標(biāo);
(2)設(shè)D為已知拋物線的對(duì)稱(chēng)軸上的任意一點(diǎn),當(dāng)△ACD的面積等于△ACB的面積時(shí),求點(diǎn)D的坐標(biāo);
(3)若直線l過(guò)點(diǎn)E(4,0),M為直線l上的動(dòng)點(diǎn),當(dāng)以A、B、M為頂點(diǎn)所作的直角三角形有且只有三個(gè)時(shí),求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,拋物線經(jīng)過(guò)點(diǎn)(-2,0)(1,0)(0,2)
(1)求二次函數(shù)的解析式;
(2)寫(xiě)出頂點(diǎn)坐標(biāo)和對(duì)稱(chēng)軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y=-x2+mx+n經(jīng)過(guò)點(diǎn)A(1,0),B(6,0).
(1)求拋物線的解析式;
(2)拋物線與y軸交于點(diǎn)D,求△ABD的面積;
(3)當(dāng)y<0,直接寫(xiě)出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知⊙P的半徑為2,圓心P在拋物線y=
1
2
x2-2上運(yùn)動(dòng),當(dāng)⊙P與x軸相切時(shí),圓心P的坐標(biāo)為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù)y=ax2+bx+c(a>0)的圖象經(jīng)過(guò)點(diǎn)C(0,1),且與x軸交于不同的兩點(diǎn)A、B,若點(diǎn)A的坐標(biāo)是(1,0),點(diǎn)B在點(diǎn)A的右側(cè).
(1)c=______;
(2)求a的取值范圍;
(3)若過(guò)點(diǎn)C且平行于x軸的直線交該拋物線于另一點(diǎn)D,AD、BC交于點(diǎn)P,記△PCD的面積為S1,△PAB的面積為S2,求S1-S2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知四邊形ABCD是等腰梯形,A、B在x軸上,D在y軸上,ABCD,AD=BC=
17
,AB=5,CD=3,拋物線y=-x2+bx+c過(guò)A、B兩點(diǎn).
(1)求b、c;
(2)設(shè)M是x軸上方拋物線上的一動(dòng)點(diǎn),它到x軸與y軸的距離之和為d,求d的最大值;
(3)當(dāng)(2)中M點(diǎn)運(yùn)動(dòng)到使d取最大值時(shí),此時(shí)記點(diǎn)M為N,設(shè)線段AC與y軸交于點(diǎn)E,F(xiàn)為線段EC上一動(dòng)點(diǎn),求F到N點(diǎn)與到y(tǒng)軸的距離之和的最小值,并求此時(shí)F點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在矩形ABCD中,AB=a,BC=b,
b
3
≤a≤3b
,AE=AH=CF=CG,則四邊形EFGH的面積的最大值是( 。
A.
1
16
(a+b)2
B.
1
8
(a+b)2
C.
1
4
(a+b)2
D.
1
2
(a+b)2

查看答案和解析>>

同步練習(xí)冊(cè)答案