(本題10分)
如圖,斜坡AC的坡度(坡比)為1:,AC=10米.坡頂有一垂直于水平面的旗桿BC,旗桿頂端B點(diǎn)與A點(diǎn)有一條彩帶AB相連,AB=14米.試求旗桿BC的高度.
 
旗桿的高度為6米


 
試題分析:解:延長BC交AD于E點(diǎn),則CE⊥AD.

在Rt△AEC中,AC=10,
由坡比為1:可知:tan∠CAE=,∴∠CAE=30°.
∴ CE=AC·sin30°=10×=5,
AE=AC·cos30°=10×
在Rt△ABE中,
BE==11.
∵ BE=BC+CE,
∴ BC=BE-CE=11-5=6(米). 
答:旗桿的高度為6米.
點(diǎn)評:本題難度中等,涉及的知識包括三角函數(shù),坡比,勾股定理。通常把坡面的垂直高度h和水平寬度l的比叫做坡比,即坡角的正切值 (tan a值 a為斜坡與水平面夾角)。學(xué)生要能夠靈活運(yùn)用三角函數(shù)值來求所需的條件。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,海上有一個小島P,它的周圍12海里有暗礁,漁船由西向東航行,在點(diǎn)A測得小島P在北偏東60°方向上,航行12海里到達(dá)B點(diǎn),這時測得小島P在北偏東45°方向上.如果漁船不改變航線繼續(xù)向東行駛,有沒有觸礁的危險,通過計算說明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分 第(1)小題4分,第(2)小題4分,第(3)小題6分)
已知:如圖,在△ABC中,AB=AC=15, cos∠A=.點(diǎn)M在AB邊上,AM=2MB,點(diǎn)P是邊AC上的一個動點(diǎn),設(shè)PA=x.

(1)求底邊BC的長;
(2)若點(diǎn)O是BC的中點(diǎn),聯(lián)接MP、MO、OP,設(shè)四邊形AMOP的面積是y,求y關(guān)于x的函數(shù)關(guān)系式,并出寫出x的取值范圍;
(3)把△MPA沿著直線MP翻折后得到△MPN,是否可能使△MPN的一條邊(折痕邊PM除外)與AC垂直?若存在,請求出x的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某學(xué)生參加社會實(shí)踐活動,在景點(diǎn)P處測得景點(diǎn)B位于南偏東方向,然后沿北偏東方向走100米到達(dá)景點(diǎn)A,此時測得景點(diǎn)B正好位于景點(diǎn)A的正南方向,求景點(diǎn)A與景點(diǎn)B之的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在Rt△ABC中,∠C=90°,sinA=,則cosB的值為(    )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

三角函數(shù)、、之間的大小關(guān)系是
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在Rt△ABC中,,,則sin的值為
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)已知:sinα·cos60º=,求銳角α;
(2)計算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若一直角三角形兩邊長分別為12和5,則第三邊長為(  )
A.13B.13或C.13或15D.15

查看答案和解析>>

同步練習(xí)冊答案