【題目】已知拋物線Lyx2+bx﹣2x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),并與y軸相交于點(diǎn)C且點(diǎn)A的坐標(biāo)是(﹣1,0).

(1)求該拋物線的函數(shù)表達(dá)式及頂點(diǎn)D的坐標(biāo);

(2)判斷ABC的形狀,并求出ABC的面積;

(3)將拋物線向左或向右平移,得到拋物線L′,Lx軸相交于A'、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),并與y軸相交于點(diǎn)C,要使A'BCABC的面積相等,求所有滿足條件的拋物線的函數(shù)表達(dá)式.

【答案】(1)y=x2x﹣2,頂點(diǎn)D的坐標(biāo)為(,﹣);(2)△ABC是直角三角形,△ABC的面積是5;(3)所有滿足條件的拋物線的函數(shù)表達(dá)式是y=,y=,y=

【解析】

(1)根據(jù)拋物線過(guò)點(diǎn)A可以求得拋物線的解析式,然后將拋物線化為頂點(diǎn)式即可得到頂點(diǎn)D的坐標(biāo);

(2)根據(jù)(1)中的函數(shù)解析式可以求得點(diǎn)A、B、C的坐標(biāo),從而可以判斷ABC的形狀并求出它的面積;

(3)根據(jù)平移的特點(diǎn)和分類討論的方法可以求得相應(yīng)的函數(shù)解析式.

(1)∵拋物線L:y=x2+bx﹣2過(guò)點(diǎn)A(﹣1,0),

0=×(﹣1)2+b×(﹣1)﹣2,

解得,b=﹣,

y=x2x﹣2=

∴點(diǎn)D的坐標(biāo)為(,﹣),

即該拋物線的函數(shù)表達(dá)式是y=x2x﹣2,頂點(diǎn)D的坐標(biāo)為(,﹣);

(2)當(dāng)y=0時(shí),0=x2x﹣2,解得,x1=﹣1,x2=4,當(dāng)x=0時(shí),y=﹣2,

則點(diǎn)A(﹣1,0),點(diǎn)B(4,0),點(diǎn)C(0,﹣2),

AB=5,AC=,BC=2,

AB2=AC2+BC2,

∴△ABC是直角三角形,

∴△ABC的面積是:=5;

(3)∵拋物線向左或向右平移,

∴平移后A′B′與平移前的AB的長(zhǎng)度相等,

∴只要平移后過(guò)(0,﹣2)或過(guò)(0,2)即滿足條件,

當(dāng)向右平移時(shí),

y=,當(dāng)x=0時(shí),y==2,得a=,

此時(shí)y=

當(dāng)向左平移時(shí),

y=,當(dāng)x=0時(shí),y==±2,得m=m=3,

當(dāng)m=時(shí),y=,當(dāng)m=3時(shí),y=﹣2,

由上可得,所有滿足條件的拋物線的函數(shù)表達(dá)式是y=,y=,y=﹣2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在,,作的垂直平分線,交于點(diǎn),交于點(diǎn),連接,若,則

A.2B.1C.D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋擲兩枚普通的正方體骰子,把兩枚骰子的點(diǎn)數(shù)相加,若第一枚骰子的點(diǎn)數(shù)為1,第二枚骰子的點(diǎn)數(shù)為5,則是和為6”的一種情況,我們按順序記作(1,5),如果一個(gè)游戲規(guī)定擲出和為6”時(shí)甲方贏,擲出和為9”時(shí)乙方贏,則這個(gè)游戲________(填公平”、“不公平”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+x+2x軸交于A、B兩點(diǎn),交y軸于點(diǎn)C,點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為點(diǎn)D.

(1)求線段AC的長(zhǎng)度;

(2)P為線段BC上方拋物線上的任意一點(diǎn),點(diǎn)E為(0,﹣1),一動(dòng)點(diǎn)Q從點(diǎn)P出發(fā)運(yùn)動(dòng)到y軸上的點(diǎn)G,再沿y軸運(yùn)動(dòng)到點(diǎn)E.當(dāng)四邊形ABPC的面積最大時(shí),求PG+GE的最小值;

(3)將線段AB沿x軸向右平移,設(shè)平移后的線段為A'B',直至A'P平行于y軸(點(diǎn)P為第2小問(wèn)中符合題意的P點(diǎn)),連接直線CB'.將△AOC繞著O旋轉(zhuǎn),設(shè)旋轉(zhuǎn)后A、C的對(duì)應(yīng)點(diǎn)分別為A'、C',在旋轉(zhuǎn)過(guò)程中直線A'C'y軸交于點(diǎn)M,與線段CB'交于點(diǎn)N.當(dāng)△CMN是以MN為腰的等腰三角形時(shí),寫出CM的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問(wèn)題:

1)甲登山上升的速度是每分鐘   米,乙在A地時(shí)距地面的高度b   米;

2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請(qǐng)求出乙登山全程中,距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)關(guān)系式;

3)登山多長(zhǎng)時(shí)間時(shí),甲、乙兩人距地面的高度差為70米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于A(﹣1,0),B(5,0)兩點(diǎn),直線y=﹣x+3y軸交于點(diǎn)C,與x軸交于點(diǎn)D.點(diǎn)P是直線CD上方的拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)PPF⊥x軸于點(diǎn)F,交直線CD于點(diǎn)E,設(shè)點(diǎn)P的橫坐標(biāo)為m.

(1)求拋物線的解析式;

(2)PE的長(zhǎng)最大時(shí)m的值.

(3)Q是平面直角坐標(biāo)系內(nèi)一點(diǎn),在(2)的情況下,以PQCD為頂點(diǎn)的四邊形是平行四邊形是否存在?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn),線段AB的兩個(gè)端點(diǎn)的坐標(biāo)分別為A (0,2),B(﹣1,0),點(diǎn)C為線段AB的中點(diǎn),現(xiàn)將線段BA繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到線段BD,拋物線y=ax2+bx+c(a≠0)、經(jīng)過(guò)點(diǎn)D.

(1)如圖1,若該拋物線經(jīng)過(guò)原點(diǎn)O,且a=﹣1.

求點(diǎn)D的坐標(biāo)及該拋物線的解析式;

連結(jié)CD,問(wèn):在拋物線上是否存在點(diǎn)P,使得∠POB與∠BCD互余?若存在,請(qǐng)求出所有滿足條件的點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

(2)如圖2,若該拋物線y=ax2+bx+c(a<0)經(jīng)過(guò)點(diǎn)E(﹣1,1),點(diǎn)Q在拋物線上,且滿足∠QOB與∠BCD互余,若符合條件的Q點(diǎn)的個(gè)數(shù)是4個(gè),請(qǐng)直接寫出a的取值范圍   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某藍(lán)莓種植生產(chǎn)基地產(chǎn)銷兩旺采摘的藍(lán)莓部分加工銷售,部分直接銷售,且當(dāng)天都能銷售完,直接銷售是40/,加工銷售是130/(不計(jì)損耗).已知基地雇傭20名工人,每名工人只能參與采摘和加工中的一項(xiàng)工作,每人每天可以采摘70斤或加工35設(shè)安排x名工人采摘藍(lán)莓剩下的工人加工藍(lán)莓

(1)若基地一天的總銷售收入為y,yx的函數(shù)關(guān)系式;

(2)試求如何分配工人才能使一天的銷售收入最大?并求出最大值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1在平面直角坐標(biāo)系中,、,滿足,的中點(diǎn),是線段上一動(dòng)點(diǎn),軸正半軸上一點(diǎn),且,

1)求的度數(shù);

2)如圖2,設(shè),當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),的值是否變化?若變化,說(shuō)明理由;若不變,請(qǐng)求的值;

3)如圖3,設(shè),若,求點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案