【題目】如圖,一艘輪船位于燈塔P南偏西60°方向的A處,它向東航行20海里到達燈塔P南偏西45°方向上的B處,若輪船繼續(xù)沿正東方向航行,求輪船航行途中與燈塔P的最短距離.(結(jié)果保留根號)
【答案】(10+10)海里
【解析】
利用題意得到AC⊥PC,∠APC=60°,∠BPC=45°,AB=20海里,如圖,設BC=x海里,則AC=AB+BC=(20+x)海里.解△PBC,得出PC=BC=x海里,解Rt△APC,得出AC=PCtan60°=x,根據(jù)AC不變列出方程x=20+x,解方程即可.
如圖,AC⊥PC,∠APC=60°,∠BPC=45°,AB=20海里,設BC=x海里,則AC=AB+BC=(20+x)海里.
在△PBC中,∵∠BPC=45°,
∴△PBC為等腰直角三角形,
∴PC=BC=x海里,
在Rt△APC中,∵tan∠APC=,
∴AC=PCtan60°=x,
∴x=20+x,
解得x=10+10,
則PC=(10+10)海里.
答:輪船航行途中與燈塔P的最短距離是(10+10)海里.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=-1,且拋物線經(jīng)過A(1,0),C(0,3)兩點,與x軸交于點B.
(1)若直線y=mx+n經(jīng)過B、C兩點,求直線BC和拋物線的解析式;
(2)在拋物線的對稱軸x=-1上找一點M,使點M到點A的距離與到點C的距離之和最小,求出點M的坐標;
(3)設點P為拋物線的對稱軸x=-1上的一個動點,求使△BPC為直角三角形的點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】漢江是長江最長的支流,在歷史上占居重要地位,陜西省境內(nèi)的漢江為漢江上游段.李琳利用熱氣球探測器測量漢江某段河寬,如圖,探測器在A處觀測到正前方漢江兩岸岸邊的B、C兩點,并測得B、C兩點的俯角分別為45°,30°已知A處離地面的高度為80m,河平面BC與地面在同一水平面上,請你求出漢江該段河寬BC.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,二次函數(shù)y=k(x﹣1)2+2的圖象與一次函數(shù)y=kx﹣k+2的圖象交于A、B兩點,點B在點A的右側(cè),直線AB分別與x、y軸交于C、D兩點,其中k<0.
(1)求A、B兩點的橫坐標;
(2)若△OAB是以OA為腰的等腰三角形,求k的值;
(3)二次函數(shù)圖象的對稱軸與x軸交于點E,是否存在實數(shù)k,使得∠ODC=2∠BEC,若存在,求出k的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:在△ABC中,∠BAC=90°,AB=AC.
(1)如圖1,將線段AC繞點A逆時針旋轉(zhuǎn)60°得到AD,連結(jié)CD、BD,∠BAC的平分線交BD于點E,連結(jié)CE.
①求證:∠AED=∠CED;
②用等式表示線段AE、CE、BD之間的數(shù)量關系(直接寫出結(jié)果);
(2)在圖2中,若將線段AC繞點A順時針旋轉(zhuǎn)60°得到AD,連結(jié)CD、BD,∠BAC的平分線交BD的延長線于點E,連結(jié)CE.請補全圖形,并用等式表示線段AE、CE、BD之間的數(shù)量關系,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的半徑為2,圓心O在坐標原點,正方形ABCD的邊長為2,點A、B在第二象限,點C、D在⊙O上,且點D的坐標為(0,2),現(xiàn)將正方形ABCD繞點C按逆時針方向旋轉(zhuǎn)150°,點B運動到了⊙O上點B1處,點A、D分別運動到了點A1、D1處,即得到正方形A1B1C1D1(點C1與C重合);再將正方形A1B1C1D1繞點B1按逆時針方向旋轉(zhuǎn)150°,點A1運動到了⊙O上點A2處,點D1、C1分別運動到了點D2、C2處,即得到正方形A2B2C2D2(點B2與B1重合),…,按上述方法旋轉(zhuǎn)2020次后,點A2020的坐標為( 。
A.(0,2)B.(2+,﹣1)
C.(﹣1﹣,﹣1﹣)D.(1,﹣2﹣)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠ABC=60°,E是CD邊上一點,作等邊△BEF,連接AF.
(1)求證:CE=AF;
(2)EF與AD交于點P,∠DPE=48°,求∠CBE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC的中點,四邊形ABDE是平行四邊形.
(1)求證:四邊形ADCE是矩形;
(2)若AC、DE交于點O,四邊形ADCE的面積為16,CD=4,求∠AOD的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com