【題目】某商場(chǎng)將每件進(jìn)價(jià)為80元的某種商品原來按每件100元出售,一天可售出100件.后來經(jīng)過市場(chǎng)調(diào)查,發(fā)現(xiàn)這種商品單價(jià)每降低1元,其銷量可增加10件.
(1)求商場(chǎng)經(jīng)營(yíng)該商品原來一天可獲利潤(rùn)多少元?
(2)設(shè)后來該商品每件降價(jià)x元,商場(chǎng)一天可獲利潤(rùn)y元.
①若商場(chǎng)經(jīng)營(yíng)該商品一天要獲利潤(rùn)2160元,則每件商品應(yīng)降價(jià)多少元?
②求出y與x之間的函數(shù)關(guān)系式,并直接寫出當(dāng)x取何值時(shí),商場(chǎng)獲利潤(rùn)不少于2160元.

【答案】
(1)解:若商店經(jīng)營(yíng)該商品不降價(jià),則一天可獲利潤(rùn)100×(100﹣80)=2000(元)
(2)解:①依題意得:(100﹣80﹣x)(100+10x)=2160,

即x2﹣10x+16=0,

解得:x1=2,x2=8,

經(jīng)檢驗(yàn):x1=2,x2=8,

答:商店經(jīng)營(yíng)該商品一天要獲利潤(rùn)2160元,則每件商品應(yīng)降價(jià)2元或8元;

②依題意得:y=(100﹣80﹣x)(100+10x)=﹣10x2+100x+2000,

∵﹣10<0,

∴當(dāng)2≤x≤8時(shí),商店所獲利潤(rùn)不少于2160元


【解析】(1)根據(jù)總利潤(rùn)=每件的利潤(rùn)每天的銷量即可;
(2)①利用(1)中的相等關(guān)系列出方程(100﹣80﹣x)(100+10x)=2160,解之即可;
②根據(jù)以上相等關(guān)系即可得出函數(shù)解析式。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了倡導(dǎo)“節(jié)約用水,從我做起”,黃岡市政府決定對(duì)市直機(jī)關(guān)500戶家庭的用水情況作一次調(diào)查. 市政府調(diào)查小組隨機(jī)抽查了其中的100戶家庭一年的月平均用水量(單位:噸),并將調(diào)查結(jié)果制成了如圖所示的條形統(tǒng)計(jì)圖.

1)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)求這100個(gè)樣本數(shù)據(jù)的平均數(shù);

3)根據(jù)樣本數(shù)據(jù),估計(jì)黃岡市直機(jī)關(guān)500戶家庭中月平均用水量不超過12噸的約有多少戶?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把直角梯形ABCD沿AD方向平移到梯形EFGH的位置,HG=24cm,MG=8cm,MC=6cm,則陰影部分的面積是____cm2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在四邊形ABCD,給出了下列三個(gè)論斷:①對(duì)角線AC平分∠BAD;CD=BC;③∠D+B=180°.在上述三個(gè)論斷中,若以其中兩個(gè)論斷作為條件另外一個(gè)論斷作為結(jié)論,則可以得出______個(gè)正確的命題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為1的正方形網(wǎng)格中,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)A、B的坐標(biāo)分別是A(5,3)、B(5,1).
(1)在圖中標(biāo)出△ABC外心D的位置,并直接寫出它的坐標(biāo);
(2)判斷△ABC的外接圓D與x軸、y軸的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E正方形ABCD外一點(diǎn),點(diǎn)F是線段AE上一點(diǎn),△EBF是等腰直角三角形,其中∠EBF=90°,連接CE、CF.
(1)求證:△ABF≌△CBE;
(2)判斷△CEF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0)和B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,對(duì)稱軸與x軸交于點(diǎn)E,點(diǎn)D為頂點(diǎn),連接BD、CD、BC.

(1)求二次函數(shù)解析式及頂點(diǎn)坐標(biāo);
(2)點(diǎn)P為線段BD上一點(diǎn),若SBCP= ,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)M為拋物線上一點(diǎn),作MN⊥CD,交直線CD于點(diǎn)N,若∠CMN=∠BDE,請(qǐng)直接寫出所有符合條件的點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,己知△ABC,任取一點(diǎn)O,連AO,BO,CO,并取它們的中點(diǎn)D,E,F(xiàn),得△DEF,則下列說法正確的個(gè)數(shù)是( ) ①△ABC與△DEF是位似圖形; ②△ABC與△DEF是相似圖形;
③△ABC與△DEF的周長(zhǎng)比為1:2;④△ABC與△DEF的面積比為4:1.

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,CB=CD,對(duì)角線AC,BD相交于點(diǎn)O,下列結(jié)論中:

①∠ABC=ADC;

AC與BD相互平分;

AC,BD分別平分四邊形ABCD的兩組對(duì)角;

四邊形ABCD的面積S=ACBD.

正確的是 (填寫所有正確結(jié)論的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案