如圖,已知點(diǎn)A是以MN為直徑的半圓上一個(gè)三等分點(diǎn),點(diǎn)B是
AN
的中點(diǎn),點(diǎn)P是半徑ON上的點(diǎn).若⊙O的半徑為l,則AP+BP的最小值為(  )
分析:本題是要在MN上找一點(diǎn)P,使PA+PB的值最小,設(shè)A′是A關(guān)于MN的對(duì)稱點(diǎn),連接A′B,與MN的交點(diǎn)即為點(diǎn)P.此時(shí)PA+PB=A′B是最小值,可證△OA′B是等腰直角三角形,從而得出結(jié)果.1
解答:解:作點(diǎn)A關(guān)于MN的對(duì)稱點(diǎn)A′,連接A′B,交MN于點(diǎn)P,則PA+PB最小,
連接OA′,AA′,OB,
∵點(diǎn)A與A′關(guān)于MN對(duì)稱,點(diǎn)A是半圓上的一個(gè)三等分點(diǎn),
∴∠A′ON=∠AON=60°,PA=PA′,
∵點(diǎn)B是弧AN^的中點(diǎn),
∴∠BON=30°,
∴∠A′OB=∠A′ON+∠BON=90°,
又∵OA=OA′=1,
∴A′B=
2

∴PA+PB=PA′+PB=A′B=
2

故選B.
點(diǎn)評(píng):正確確定P點(diǎn)的位置是解題的關(guān)鍵,確定點(diǎn)P的位置這類題在課本中有原題,因此加強(qiáng)課本題目的訓(xùn)練至關(guān)重要.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知點(diǎn)A是以MN為直徑的半圓上一個(gè)三等分點(diǎn),點(diǎn)B是AN的中點(diǎn),點(diǎn)P是半徑ON上的點(diǎn),若⊙O的半徑為1,則AP+BP的最小值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•德陽(yáng))如圖,已知點(diǎn)C是以AB為直徑的⊙O上一點(diǎn),CH⊥AB于點(diǎn)H,過(guò)點(diǎn)B作⊙O的切線交直線AC于點(diǎn)D,點(diǎn)E為CH的中點(diǎn),連接AE并延長(zhǎng)交BD于點(diǎn)F,直線CF交AB的延長(zhǎng)線于G.
(1)求證:AE•FD=AF•EC;
(2)求證:FC=FB;
(3)若FB=FE=2,求⊙O的半徑r的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知點(diǎn)M是以AB為直徑的半圓上的一個(gè)三等分點(diǎn),點(diǎn)N是弧BM的中點(diǎn),點(diǎn)P是直徑AB上的點(diǎn).若⊙O的半徑為1.
(1)用尺規(guī)在圖中作出點(diǎn)P,使MP+NP的值最。ūA糇鲌D痕跡,不寫(xiě)作法);
(2)求MP+NP的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年初中畢業(yè)升學(xué)考試(四川德陽(yáng)卷)數(shù)學(xué)(帶解析) 題型:解答題

如圖,已知點(diǎn)C是以AB為直徑的⊙O上一點(diǎn),CH⊥AB于點(diǎn)H,過(guò)點(diǎn)B作⊙O 的切線交直線AC于點(diǎn)D,點(diǎn)E為CH的中點(diǎn),連結(jié)并延交BD于點(diǎn)F,直線CF交AB的延長(zhǎng)線于G.
⑴求證:AE·FD=AF·EC;
⑵求證:FC=FB;
⑶若FB=FE=2,求⊙O 的半徑r的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案