已知關(guān)于x的方程mx2﹣3(m+1)x+2m+3=0.
(1)求證:無(wú)論m取任何實(shí)數(shù),該方程總有實(shí)數(shù)根;
(2)若m≠0,拋物線y=mx2﹣3(m+1)x+2m+3與x軸的交點(diǎn)到原點(diǎn)的距離小于2,且交點(diǎn)的橫坐標(biāo)是整數(shù),求m的整數(shù)值.

(1)詳見(jiàn)解析;(2)m的值為﹣1或1.

解析試題分析:(1)先分兩種情況討論,當(dāng)m=0時(shí)方程的解為1和當(dāng)m≠0時(shí),△=b2-4ac=m+2)2≥0有實(shí)數(shù)根,得出無(wú)論m取任何實(shí)數(shù)時(shí),方程恒有實(shí)數(shù)根;
(2)對(duì)于拋物線解析式,令y=0,表示出x,根據(jù)拋物線與x軸交點(diǎn)的橫坐標(biāo)都是整數(shù),根據(jù)x的范圍即可確定出m的整數(shù)值.
解:(1)當(dāng)m=0時(shí),方程為-3x+3=0,x=1,此一元一次方程有實(shí)根,
當(dāng)m≠0時(shí),∵方程有實(shí)數(shù)根,
∴△≥0,即[﹣3(m+1)]2﹣4m(2m+3)=(m+3)2≥0,
則m取任何值方程都有實(shí)數(shù)根;
(2)設(shè)y=0,則mx2﹣3(m+1)x+2m+3=0.
∵△=(m+3)2,
∴x=,
∴x1=,x2=1,
當(dāng)x1=是整數(shù)時(shí),可得m=1或m=﹣1或m=3,
∵|x|<2,m=3不合題意舍去,
∴m的值為﹣1或1.
考點(diǎn):1.拋物線與x軸的交點(diǎn);2.一元一次方程的解;3.根的判別式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,以扇形OAB的頂點(diǎn)O為原點(diǎn),半徑OB所在的直線為x軸,建立平面直角坐標(biāo)系,點(diǎn)B的坐標(biāo)為(2,0),若拋物線與扇形OAB的邊界總有兩個(gè)公共點(diǎn),則實(shí)數(shù)的取值范圍是              

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,在邊長(zhǎng)10cm為的正方形ABCD中,P為AB邊上任意一點(diǎn)(P不與A、B兩點(diǎn)重合),連結(jié)DP,過(guò)點(diǎn)P作PE⊥DP,垂足為P,交BC于點(diǎn)E,則BE的最大長(zhǎng)度為       cm。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,矩形OABC頂點(diǎn)B的坐標(biāo)為(8,3),定點(diǎn)D的坐標(biāo)為(12,0),動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿x軸的正方向勻速運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)D出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿x軸的負(fù)方向勻速運(yùn)動(dòng),PQ兩點(diǎn)同時(shí)運(yùn)動(dòng),相遇時(shí)停止.在運(yùn)動(dòng)過(guò)程中,以PQ為斜邊在x軸上方作等腰直角三角形PQR.設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t=    時(shí),△PQR的邊QR經(jīng)過(guò)點(diǎn)B;
(2)設(shè)△PQR和矩形OABC重疊部分的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;
(3)如圖2,過(guò)定點(diǎn)E(5,0)作EF⊥BC,垂足為F,當(dāng)△PQR的頂點(diǎn)R落在矩形OABC的內(nèi)部時(shí),過(guò)點(diǎn)R作x軸、y軸的平行線,分別交EF、BC于點(diǎn)M、N,若∠MAN=45°,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖①,在平面直角坐標(biāo)系中,點(diǎn)A是拋物線y=x2在第一象限上的一個(gè)點(diǎn),連結(jié)OA,過(guò)點(diǎn)A作AB⊥OA,交y軸于點(diǎn)B,設(shè)點(diǎn)A的橫坐標(biāo)為n.

【探究】:
(1)當(dāng)n=1時(shí),點(diǎn)B的縱坐標(biāo)是  
(2)當(dāng)n=2時(shí),點(diǎn)B的縱坐標(biāo)是  ;
(3)點(diǎn)B的縱坐標(biāo)是  (用含n的代數(shù)式表示).
【應(yīng)用】:
如圖②,將△OAB繞著斜邊OB的中點(diǎn)順時(shí)針旋轉(zhuǎn)180°,得到△BCO.
(1)求點(diǎn)C的坐標(biāo)(用含n的代數(shù)式表示);
(2)當(dāng)點(diǎn)A在拋物線上運(yùn)動(dòng)時(shí),點(diǎn)C也隨之運(yùn)動(dòng).當(dāng)1≤n≤5時(shí),線段OC掃過(guò)的圖形的面積是  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知直線與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,拋物線經(jīng)過(guò)點(diǎn)A和點(diǎn)C,對(duì)稱軸為直線l:,該拋物線與x軸的另一個(gè)交點(diǎn)為B.
(1)求此拋物線的解析式;
(2)點(diǎn)P在直線l上,求出使△PAC的周長(zhǎng)最小的點(diǎn)P的坐標(biāo);
(3)點(diǎn)M在此拋物線上,點(diǎn)N在y軸上,以A、B、M、N為頂點(diǎn)的四邊形能否為平行四邊形?若能,直接寫(xiě)出所有滿足要求的點(diǎn)M的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線y=x2﹣(k+2)x+和直線y=(k+1)x+(k+1)2
(1)求證:無(wú)論k取何實(shí)數(shù)值,拋物線總與x軸有兩個(gè)不同的交點(diǎn);
(2)拋物線于x軸交于點(diǎn)A、B,直線與x軸交于點(diǎn)C,設(shè)A、B、C三點(diǎn)的橫坐標(biāo)分別是x1、x2、x3,求x1•x2•x3的最大值;
(3)如果拋物線與x軸的交點(diǎn)A、B在原點(diǎn)的右邊,直線與x軸的交點(diǎn)C在原點(diǎn)的左邊,又拋物線、直線分別交y軸于點(diǎn)D、E,直線AD交直線CE于點(diǎn)G(如圖),且CA•GE=CG•AB,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

己知:二次函數(shù)y=ax2+bx+6(a≠0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè))點(diǎn)
A、點(diǎn)B的橫坐標(biāo)是一元二次方程x2-4x-12=0的兩個(gè)根.
(1)請(qǐng)直接寫(xiě)出點(diǎn)A、點(diǎn)B的坐標(biāo).
(2)請(qǐng)求出該二次函數(shù)表達(dá)式及對(duì)稱軸和頂點(diǎn)坐標(biāo).
(3)如圖1,在二次函數(shù)對(duì)稱軸上是否存在點(diǎn)P,使△APC的周長(zhǎng)最小,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(4)如圖2,連接AC、BC,點(diǎn)Q是線段0B上一個(gè)動(dòng)點(diǎn)(點(diǎn)Q不與點(diǎn)0、B重合).過(guò)點(diǎn)Q作QD∥AC交BC于點(diǎn)D,設(shè)Q點(diǎn)坐標(biāo)(m,0),當(dāng)△CDQ面積S最大時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,拋物線的頂點(diǎn)為P(-2,2)與y軸交于點(diǎn)A(0,3),若平移該拋物線使其頂P沿直線移動(dòng)到點(diǎn),點(diǎn)A的對(duì)應(yīng)點(diǎn)為,則拋物線上PA段掃過(guò)的區(qū)域(陰影部分)的面積為     .

查看答案和解析>>

同步練習(xí)冊(cè)答案