如圖,已知直角坐標系中一條圓弧經(jīng)過正方形網(wǎng)格的格點A、B、C.
(1)用直尺和圓規(guī)畫出該圓弧所在圓的圓心M的位置(不用寫作法,保留作圖痕跡).
(2)若A點的坐標為(0,4),D點的坐標為(7,0),直線CD與⊙M的位置關系為______,再連接MA、MC,將扇形AMC卷成一個圓錐,求此圓錐的側(cè)面積.

【答案】分析:(1)根據(jù)垂徑定理得出圓心;
(2)連接MA,可證明△AOM≌△MEC,則∠AMO=∠MCE,從而得出∠AMC=90°,即AM⊥MC,由MA=MC=2,由弧長公式扇形AMC卷成的圓錐的半徑為r.
解答:解:(1)正確找到圓心.…(2分)

(2)相切…(2分)
連接MA,
∵OA=ME=4,OM=CE=2,∠AOM=∠MEC=90°,
∴△AOM≌△MEC,∴∠AMO=∠MCE,
又∵∠CME+∠MCE=90°,∠AMO+∠CME=90°
∴∠AMC=90°
∴AM⊥MC      …(1分)
又∵MA=MC=2   …(1分)
∴弧AC的長=x
設扇形AMC卷成的圓錐的半徑為r,則r=…(2分)
∴扇形AMC卷成的圓錐的側(cè)面積=5π.…(2分)
點評:本題考查了圓錐的計算、全等三角形的判定和性質(zhì)、垂徑定理以及直線和圓的位置關系,是一道綜合題,難度偏大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知直角坐標系中一條圓弧經(jīng)過正方形網(wǎng)格的格點A、B、C.
(1)用直尺和圓規(guī)畫出該圓弧所在圓的圓心M的位置(不用寫作法,保留作圖痕跡).
(2)若A點的坐標為(0,4),D點的坐標為(7,0),求證:直線CD是⊙M的切線.
(3)在(2)的條件下,連接MA、MC,將扇形AMC卷成一個圓錐,求此圓錐的高.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

12、如圖,已知直角坐標系中的點A、B的坐標分別為A(2,4)、B(4,0),且P為AB的中點.若將線段AB向右平移3個單位后,與點P對應的點為Q,則點Q的坐標是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

7、如圖,已知直角坐標系中一條圓弧經(jīng)過正方形網(wǎng)格的格點A,B,C.若A點的坐標為(0,4),D點的坐標為(7,0),那么圓心M點的坐標( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知直角坐標系中四點A(-2,4),B(-2,0),C(2,-3),D(2,0)、設P是x軸上的點,且PA、PB、AB所圍成的三角形與PC、PD、CD所圍成的三角形相似,請寫出所有符合上述條件的點P的坐標:
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知直角坐標系中一條圓弧經(jīng)過正方形網(wǎng)格的格點A、B、C.用直尺和圓規(guī)畫出該圓弧所在圓的圓心M的位置(不用寫作法,保留作圖痕跡).

查看答案和解析>>

同步練習冊答案