【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①b2﹣4ax>0;②2a+b>0;③abc<0;④4a﹣2b+c<0;⑤a+b+c>0.其中正確的個(gè)數(shù)是( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
【答案】C
【解析】
由二次函數(shù)的開口方向,對稱軸x>1,以及二次函數(shù)與y的交點(diǎn)在x軸的下x方,與x軸有兩個(gè)交點(diǎn)等條件來判斷各結(jié)論的正誤即可.
∵拋物線與x軸有兩個(gè)交點(diǎn),
∴△=b2﹣4ac>0,故①正確;
∵拋物線開口向下,
∴a<0,
∵對稱軸x=﹣=1.5>1,
∴2a+b>0,故②正確;
∵a<0,﹣>0,
∴b>0,
∵拋物線與y軸的交點(diǎn)在x軸的下方,
∴c<0,
∴abc>0,故③錯(cuò)誤;
∵x=﹣2時(shí),y<0,
∴4a﹣2b+c<0,故④正確;
∵x=1時(shí),y>0,
∴a+b+c>0,故⑤正確,
所以正確的用4個(gè),
故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分8分)
如圖,用兩段等長的鐵絲恰好可以分別圍成一個(gè)正五邊形和一個(gè)正六邊形,其中正五邊形的邊長為(),正六邊形的邊長為()cm(其中),求這兩段鐵絲的總長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,BC是⊙O的直徑,D是劣弧AC中點(diǎn),BD交AC于點(diǎn)E.
(1)求證:AD2=DEDB;
(2)若BC=13,CD=5,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當(dāng)水面的寬度為10m時(shí),橋洞與水面
的最大距離是5m.
(1)經(jīng)過討論,同學(xué)們得出三種建立平面直角坐標(biāo)系的方案(如下圖)
你選擇的方案是_____(填方案一,方案二,或方案三),則B點(diǎn)坐標(biāo)是______,求出你所選方案中的拋物線的表達(dá)式;
(2)因?yàn)樯嫌嗡畮煨购?/span>,水面寬度變?yōu)?/span>6m,求水面上漲的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),△ABC是直角三角形,∠ACB=90°,點(diǎn)B、C都在第一象限內(nèi),CA⊥x軸,垂足為點(diǎn)A,反比例函數(shù)y1=的圖象經(jīng)過點(diǎn)B;反比例函數(shù)y2=的圖象經(jīng)過點(diǎn)C(,m).
(1)求點(diǎn)B的坐標(biāo);
(2)△ABC的內(nèi)切圓⊙M與BC,CA,AB分別相切于D,E,F(xiàn),求圓心M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的斜邊AB在y軸上,邊AC與x軸交于點(diǎn)D,經(jīng)過A,D兩點(diǎn)的圓的圓心F恰好在y軸上,⊙F與邊BC相切于點(diǎn)E,與x軸交于點(diǎn)M,與y軸相交于另一點(diǎn)G,連接AE.
(1)求證:AE平分∠BAC;
(2)若點(diǎn)A,D的坐標(biāo)分別為(0,﹣1),(2,0),求⊙F的半徑;
(3)求經(jīng)過三點(diǎn)M,F,D的拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程
①(x+1)2=4x
②x2+3x﹣4=0(用配方法)
③x2﹣2x﹣8=0
④2(x+4)2=5(x+4)
⑤2x2﹣7x=4
⑥(x+1)(x+2)=2x+4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿對角線AC折疊,使點(diǎn)B翻折到點(diǎn)E處,若,則的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=-x2+bx+c經(jīng)過點(diǎn)A、B、C,已知A(-1,0),C(0,3).
(1)求拋物線的表達(dá)式;
(2)如圖1,P為線段BC上一點(diǎn),過點(diǎn)P作y軸平行線,交拋物線于點(diǎn)D,當(dāng)△BCD的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)如圖2,拋物線頂點(diǎn)為E,EF⊥x軸于F點(diǎn),N是線段EF上一動(dòng)點(diǎn),M(m,0)是x軸上一動(dòng)點(diǎn),若∠MNC=90°,直接寫出實(shí)數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com